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Exoplanets orbiting close their parent stars could lose some fraction of their
atmospheres because of the extreme irradiation'>. In particular, it has been suggested
that large and hot rocky planets6 might have lost all of their atmosphere, having begun
as Neptune-like’'%. It has been predicted that the signature of this loss would be visible
in the ultraviolet", with transits extended in depth and duration beyond those visible in
the optical. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b
has transits eclipsing 56.3+£3.5% of the stellar surface, far beyond the 0.69% occultations
caused by the optical transits. The ultraviolet transits start ~2 hrs before, and end >3 hrs
after the optical transits, which last for ~1 hr. We infer from this that the planet is
surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms
on ballistic trajectories. Although atmospheric mass loss primarily affects low-mass
exoplanets, no confident measurements were previously available. The unambiguous
detection (16.00) at GJ 436b allows an estimation for the mass-loss rate in the range of
~108—109g s, which today is far too small to deplete the atmosphere of a Neptune-like
planet in the lifetime of the parent star, but would have been much greater in the past.
These observations opens the exciting possibility that large atmospheric signals could be
retrieved in the UV for a whole population of moderately irradiated, low-mass

exoplanets.
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Three transits of GJ 436b, which occur every 2.64 days, have been observed on 7 December
2012* (visit 1), 18 June 2013 (visit 2), and 23 June 2014 (visit 3) with the Space Telescope
Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). A stellar
spectrum acquired using similar settings in January 2010" (visit 0) was retrieved from the
archive for comparison purposes. HST data in visits 2 and 3 were complemented with
simultaneous Chandra X-ray observations. The HST data consist of time-tagged, far-
ultraviolet spectra obtained with a grating dispersing light over the 1,195-1,248 A domain,
with a spectral resolution of ~20kms™ at 1,215.6 A (the Lyman-o transition of atomic
hydrogen, H 1). Exposure times of 1,800 s to 2,400 s were used to observe the star for four
successive HST orbits during each visit. Each HST orbit lasts for 96 min, during which
GJ 436 is visible for 56 min before being occulted by the Earth, yielding 40 min gaps in the

data.

The most prominent spectral feature is the H 1 Lyman-a emission (Figure 1) arising in M
dwarf stars from the transition region between the chromosphere and the corona. Absorption
in this line has been reported in other systems, during transits of hot Jupiters. This is
interpreted by the presence of escaping hydrogen exospheres surrounding close-in gas
giants''*. If GJ 436b possesses such an extended atmosphere, we should thus observe a
time-resolved absorption signature over the stellar Lyman-a emission. A tentative detection
was made from visit 1 data despite the signal being observed only after the optical transit of
the planet®. Visits 2 and 3 have been specifically carried out to search for a signal related to

the optical transit.

We performed a careful analysis to check for the existence of instrumental systematics in the
data and correct for them (see the Supplementary Information). Large variations are detected
over a localised part of the stellar Lyman-a line at times corresponding to the optical transit,

which cannot be explained by any known instrumental effects. The most significant
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absorption occurs in the blue wing of the line for radial velocities between —120 km s™ to —
40 km s, during the three visits. In this interval, shown in Figure 1, the Lyman-a line is
absorbed with respect to the reference spectrum (“out-of-transit phases”) about 2 hrs before
the optical transit mid-time (“pre-transit phases”). Averaged over the three visits, which all
show remarkably similar behaviour (see Extended Data Figure 1), the pre-transit stellar flux
in the blue wing of the line is absorbed by 17.6+£5.2% with respect to the out-of-transit flux.
The absorption keeps increasing around the mid-transit time (“in-transit phases”), where the
stellar flux is absorbed by 56.2+3.6%. At this time, an equivalent surface larger than half the
stellar disc is eclipsed. After the end of the optical transit (“post-transit phases™), the
absorption signal at Lyman-a slightly decreases to 47.2+4.1%. This transit signature, plotted
in Figure 2, is significantly deeper than the one of 22.9+3.9% previously reported for visit 1
data alone® and starts significantly earlier (~2.7 hrs); the difference is mainly due to our
finding of a pre-transit absorption and updated transit ephemeris (see the Supplementary

Information).

In sharp contrast with the huge signature observed between —120 kms™ and —40 km s, the
flux remains stable at larger blue shifts, and over the whole red-shifted wing of the line, as
shown in Figure 2. In the red wing of the line (between +20 km s and +200 km s™), flux
ratios of 0.7+£3.6%, 1.7£3.5%, and 8.0+3.1% are measured during the pre-transit, in-transit,

and post-transit phases, respectively, which is compatible with no detection at the 3o level.

Absorption signals shallower and shorter than for GJ 436b have been reported during transits
of hot Jupiters, in the blue wing of their host star Lyman-a lines'~'*'*. These signals are all
interpreted as absorption by extended upper atmospheres around the planets. Meanwhile,
magnetic activity could also induce variations in the stellar emission. We use the unabsorbed
red part of the line to estimate that the intrinsic stellar variability at GJ 436 should not exceed

5% to 11% of the Lyman-a flux during one visit. Our Chandra X-ray data cover pre-transit
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phases at four epochs (see the Supplementary Information), two of which during HST visits 2
and 3. They show very similar extreme UV (EUV) emission, supporting small stellar
variability between HST visits at Lyman-a. We conclude that stellar variability cannot explain

the observed decrease at Lyman-a, at times coinciding with the planetary transits.

We propose that the asymmetric absorption is caused by the passage of a huge hydrogen
cloud, surrounding and trailing the planet. The planetary atmosphere is an obvious source for
this hydrogen. We test this assumption by showing that the observed Lyman-a light curve can
be reproduced with a simple transiting shape. We use an optically-thick ellipse of semi-major
axis @ and semi-minor axis b to represent the projection of the cloud in the plan of the sky.
We calculate the transit light curve that such a cloud would produce when passing in front of
the star, as seen from Earth, and fit it to the light curve, adjusting for a and b. A best fit is
obtained for a = 12.1 R« and b = 2.4 R« and the corresponding light curve and cloud contour
are plotted in Figure 2 (thick grey curve) and Figure 3, respectively. The cloud extends far
beyond the planet Roche lobe radius (4.42 R, or 0.37 R+), a spatial extension unmatched by
any of the observations of hot Jupiters. The transit of GJ 436b is grazing so we assume the
cloud would transit with a similar inclination, corresponding to an impact parameter of
0.8521'°. Remarkably, a central transit would have totally eclipsed the star and we surmise
that this should happen in the case of other red dwarfs exhibiting central transits from planets
similar to GJ 436b. Future ultraviolet observations of systems similar to GJ 436 could

potentially reveal total Lyman-a eclipses.

The fact that the absorption signal takes place in the [-120,-40]km s interval yields
additional constraints on the dynamics of the hydrogen atoms and the 3D structure of the
exospheric cloud. First, the whole velocity range is in excess of the planet escape velocity
(~26 kms" at the planet surface), consistent with gas escaping from the planet. The

acceleration mechanism of hydrogen atoms escaping from highly-irradiated hot Jupiters is
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debated: after hydrogen atoms escape the planets with initial velocities dominated by the
orbital velocity (~100 km s for GJ 436b in the host star reference frame), they are submitted
to the stellar radiation pressure, can interact with the stellar wind, and are eventually ionised
by stellar extreme UV (EUV; 10-91.2 nm) radiation. Radiation pressure is measurable from
resolved observation of the Lyman-a profile, which has to be corrected for the interstellar
medium absorption'*'”. For strong lines such as Lyman-o, radiation pressure can overcome
the stellar gravitation, repelling the escaping atoms towards the observer, and producing a
blue-shifted signature. In one hot Jupiter (HD 189733b), the absorption observed at very large
blue-shift is best explained by charge exchange interaction with the stellar wind, creating

energetic neutral atoms (ENAs) with large negative (blue-shifted) radial velocities'>'**". In

1,14,21

other cases , radiation pressure alone explain the observed radial velocities of the

escaping gas.

We run our 3D numerical simulation of atmospheric escape' to understand the origin of the
absorption signature in radial velocity observed in the blue wing of the stellar Lyman-a line.
The line profile corrected from interstellar absorption is used to calculate the stellar radiation
pressure on hydrogen atoms. These are released isotropically from the Roche lobe limit of
GJ 436b, with velocities dominated by the tangential orbital velocity of the planet at the time
of their release. The calculation takes the orbital eccentricity of GJ436b (¢ =0.15) into
account. The main parameters of the atmospheric escape model are the mass-loss rate n1 of
hydrogen lost by the planet and the photo-ionisation rate agyy of hydrogen atoms. The model
computes the structure of the escaping gas cloud as well as its radial velocity absorption
signature. A family of models, with parameters in the ranges of s~ 10°~10° gs™' and
QEyUY ~ 8% 107-3x10° 5! (implying neutral atom lifetimes of ~4—18 min at the distance of the
planet), provides good fits to the data; an example light curve is plotted in Figure 2. The

model correctly predicts the ~2 hr early UV transit ingress observed with respect to the
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optical transit, as well as the transit depth in the correct range of velocities. It provides a good
match to the re-analysed visit 1 data. It furthermore predicts that the UV transit could last up
to ~20 hrs after the optical transit, due to the extended hydrogen tail of the exospheric cloud.

More UV observations will be needed to verify this prediction.

According to the numerical simulation, the stellar radiation pressure counterbalances <70%
of the star’s gravity pull on the escaping atoms, which is much less than in other systems with
hot Jupiters, where radiation pressure takes over stellar gravity by factors of 3 to 5'°. The low
stellar radiation pressure at GJ 436b allows the formation of a large coma and tail of escaping

atoms, comoving with the planet although not gravitationally bounded to it.

Atmospheric escape is involved in the possible loss of a whole population of irradiated
exoplanets®™”'"'2. The average mass-loss rate of ~5x10® g s™ at GJ 436b means that the planet
loses ~0.1% of its atmosphere per billion years (assuming it accounts for 10% of the planet
mass, like Neptune). This rate requires ~1% efficiency in the conversion of input energy into
mass loss''. In the past, an M dwarf like GJ 436 was more active and the planet could have
received 100 times more X-ray and EUV irradiation over ~1 Gyrzz, resulting in a possible
loss of <10% of its atmosphere during the first billion years. This planet thus stands on the
edge of significant mass loss, leading us to surmise that closer-in Neptunes could have

evolved more dramatically because of atmospheric escape.

This 16.0c detection opens the exciting perspective to obtain large atmospheric signals from
comet-like exospheres around moderately-irradiated, low-mass planets in the UV, while the
atmospheric characterisation of similar planets remains challenging at longer wavelengths®.
Over ~10,000 nearby systems like GJ 436 will be discovered by upcoming transit surveys

carried out from the ground (e.g. NGTS) and from space (K2, CHEOPS, TESS, and PLATO).
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Figure 1 | Spectra of the star GJ 436 taken with the Space Telescope Imaging Spectrograph of the Hubble Space
Telescope. The region around the Lyman-o emission of atomic hydrogen (H 1) is shown in heliocentric velocity space, with
0km ™ corresponding to a wavelength of 121.56 nm. The line core (grey hatched region) cannot be observed from Earth
because of absorption by hydrogen in the interstellar medium (ISM) along the line of sight. The ISM absorption produces this
characteristic double-peak profile. The different colours show the stellar emission averaged over all HST visits at different
phases with respect to the optical transit: out-of-transit (black), pre-transit (blue), in-transit (green), and post-transit (red). The
absorption signal is measured in the blue-shifted part of the line (corresponding to negative radial velocities) in the range of
[~120,—40] km s, delimited by the vertical blue dashed lines. A control measure is performed over the red-shifted part of the
line in the range of [+30,+200] km s™' delimited by the vertical red dashed lines. The stellar line profile observed in January

2010 (visit 0) is shown for comparison with a dotted grey line.
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Figure 2 | Ultraviolet transit light curves of GJ 436b. They are calculated by integrating the stellar hydrogen Lyman-a line
in the velocity ranges [~120,-40] km s™' (blue wing of the line; top panel) and [+30,+200] km s (red wing of the line; bottom
panel). The different observation epochs are represented with different symbols for visit 1 (circles), visit 2 (stars), visit3
(squares), and visit O (triangle). The data point from visit 0, acquired ~3 years before visit 1, shows that the out-of-transit
variability is small compared to the blue-shifted signal observed in the in-transit and post-transit phases. The planetary transit

observed in the optical is shown to scale by the thin black line: with an absorption depth of 0.69%, it is barely seen at this
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scale. The vertical dotted line represent the contact points of this transit. The ultraviolet transit in the blue wing of the line is
far deeper and wider than the shallow optical transit, starting about 2 hrs before the mid-transit time and lasting for at least
3 hrs after it. No such behaviour is observed in the red wing of the line. The decrease of the red-wing flux during the post-
transit phases has been noticed by ref.[*] for the visit 1 data. This behaviour is, however, not reproduced during visits 2 and 3,
and the mean post-transit absorption of 8.0+3.1% in the red wing has a significance of 2.6c only. The grey dashed curve in
the top panel is the best-fit transit light curve of the optically thick ellipsoidal model. The contour of this ellipse is
represented in Figure 3. The thick green curve show one of the best-fit transit light curve generated with the 3D particle

simulation®.
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Figure 3 | Particle simulation'> showing an optically-thin comet-like exospheric cloud transiting the star (large white
circle), as seen from Earth. GJ 436b is the small black dot represented at mid-transit at 0.8521 stellar radius'® from the
centre of the star, which is figured by the black circle. The dotted circle around the planet represents its equivalent Roche
radius The colour of simulation particles denotes the column density of the cloud. The transit of this simulated cloud gives
rise to absorption over the blue wing of the Lyman-a line represented by the green light curve in the top panel of Figure 2.
The dashed grey ellipse delimits the best-fit optically-thick cloud from the geometrical toy model, which produces the dashed

grey light curve in the top panel of Figure 2.
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Figure 4 | Image of 3D simulation representing a slice of the comet-like cloud coplanar with the line of sight (dashed

vertical line), as viewed from “above”. The arrows represent the hydrogen atom velocity and direction in the rest frame of

the star. Particles are colour-coded as a function of their projected velocities on the line of sight (the dashed vertical line).

The inset shows a zoom out of this image to the full spatial extent of the exospheric cloud (in blue). The planet orbit is shown

to scale with the green ellipse and the star is represented with the yellow circle.
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