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Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of

up to ∼ 50. Here we report an image of an individual star at redshift z = 1.49 (dubbed

“MACS J1149 Lensed Star 1 (LS1)”) magnified by > 2000. A separate image, detected briefly

0.26′′ from LS1, is likely a counterimage of the first star demagnified for multiple years by

a & 3 M� object in the cluster. For reasonable assumptions about the lensing system, mi-

crolensing fluctuations in the stars’ light curves yield evidence about the mass function of

intracluster stars and compact objects, including binary fractions and specific stellar evolu-

tion and supernova models. Dark-matter subhalos or massive compact objects may help to

account for the two images’ long-term brightness ratio.

The pattern of magnification arising from a foreground strong gravitational lens changes with

distance behind it. At each specific distance behind the lens, the locations that are most highly

magnified are connected by a so-called caustic curve. Near the caustic curve in the source plane,

magnification changes rapidly. Over a distance of only tens of parsecs close to the MACS J1149

galaxy cluster’s caustic at z = 1.5, for example, magnification falls from a maximum of ∼ 5000 to

only ∼ 50. Since the sizes of even compact galaxies are hundreds of parsecs, their total magnifica-

tions cannot exceed ∼ 50.

However, a well-aligned individual star adjacent to the caustic of a galaxy cluster could, in

theory, become magnified by a factor of many thousands1. When a galaxy cluster’s caustic curve
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is mapped from the source plane defined at a specific redshift to the image plane on the sky, it

is called the critical curve. Consequently, a highly magnified star should be found close to the

foreground galaxy cluster’s critical curve.

1 A Lensed Blue Supergiant at Redshift z = 1.49

In Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) infrared (IR) imaging taken on

29 April 2016 to construct light curves of the multiple images of Supernova (SN) Refsdal2–11, we

detected an unexpected change in flux of an individual point source (dubbed “MACS J1149 Lensed

Star 1 (LS1)”) in the MACS J1149 galaxy-cluster field12. As shown in Fig. 1, the unresolved blue

source lies close to the cluster’s critical curve at its host galaxy’s redshift of z = 1.495–11. Fig. 2

shows that, while the location of the critical curve differs by ∼ 0.25′′ among lens models, the blue

source is no farther than ∼ 0.13′′ from the critical curves of all publicly available, high-resolution

models.

The MACS J1149 galaxy cluster lens creates two partial, merging images of LS1’s host

galaxy separated by the cluster critical curve, as well as an additional full image. As shown in

Extended Data Fig. 3, LS1’s predicted position inside the third, full image is near the tip of a spiral

arm. According to our lens model, LS1 is 7.9 ± 0.5 kpc from the nucleus of the host galaxy. The

multiply imaged SN Refsdal exploded at a different position in the same galaxy13–16.

At the peak of the microlensing event in May 2016 (Lensing Event “Lev16A”), LS1 was a

factor of ∼ 4 times brighter than it appeared in archival HST imaging during 2013–2015. Fig. 3
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shows that the additional flux we measured at LS1’s position has a spectral energy distribution

(SED) statistically consistent with the source’s SED during 2013–2015. As shown in Fig. 3,

model spectra of mid-to-late B-type stars at z = 1.49 with photospheric temperatures of 11,000–

14,000 K17 provide a good match to the SED of LS1 (χ2 = 12.9 for 6 degrees of freedom;

χ2
ν = 2.15), given that our model does not account for changes in magnification between the

epochs when observations in separate filters were obtained. SED fitting finds probability peaks at

∼ 8 and ∼ 35 Myr (see Extended Data Fig. 1) for the age of the arc underlying LS1’s position.

A lensed luminous star provides a perhaps unexpected explanation (and yet the only reason-

able one we could find) for the transient’s variable light curve and unchanging SED. Except for

finite-source effects, gravitational lensing will magnify a star’s emission at all wavelengths equally.

Therefore, as we observe for LS1, the SED of a lensed background star should remain the same,

even as it appears brighter or fainter owing to changes in its magnification. By contrast, the SEDs

of stellar outbursts and supernovae change as they brighten by the factor of ∼ 4 observed in May

2016.

As shown in Fig. 3, LS1’s SED exhibits a strong Balmer break, which indicates that the

lensed object has a relatively high surface gravity. Stars, including blue supergiants, exhibit spectra

with a strong Balmer break, but stellar outbursts and explosions have low surface gravity and lack

a strong Balmer break. The temperature of 11,000–14,000 K inferred from fitting the Balmer break

is also substantially larger than that of almost all H-rich transients during outburst such as luminous

blue variables (LBVs). While Lyman absorption of a background active galactic nucleus (AGN) at

7



z ≈ 9 could potentially produce a continuum break at ∼ 9500 Å, the AGN’s flux blueward of the

break would be almost entirely absorbed, and additional images would be expected.

Our ray-tracing simulations, which are described in detail in Ref. 18, show that the MACS J1149

galaxy cluster’s gravitational potential effectively increases the Einstein radii of individual stars in

the intracluster medium by a factor of ∼ 100 along the line of sight to LS1. Consequently, even

though intracluster stars account for . 1% of the cluster’s mass along the line of sight to LS1,

overlapping caustics arising from intracluster stars should densely cover the source plane of the

host galaxy at z = 1.49, as demonstrated by our simulation plotted in Extended Data Fig. 2. By

contrast, Galactic microlensing magnification can be fully modeled using the caustic of a single

star or stellar system.

The ray-tracing simulations show that a star at LS1’s location should experience multiple

microlensing events over a period of a decade with typical magnifications of 103–104. In Fig. 4,

we display the 2004–2017 light curve of LS1 constructed from all optical and IR HST observations

of the field, and we show ray-tracing simulations that can describe LS1’s light curve.

2 A Separate Microlensing Event at a Different Position

A foreground gravitational lens made of smoothly distributed matter should form a pair of images

of a static background source at equal angular offsets from the critical curve. However, only a

single, persistent point source is apparent near the critical curve in HST imaging taken during the

period 2004–2017. We initially considered the possibility that LS1 happens to be sufficiently close
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to the galaxy cluster’s caustic that its pair of images have a small angular separation unresolved

in HST data. As we continued to monitor the MACS J1149 cluster field, however, we detected an

unexpected new source (“Lev16B”) on 30 October 2016 offset by 0.26′′ from LS1. We measure

magnitudes of F125W = 25.78 ± 0.12 AB (λpivot = 1.25µm) and F160W = 26.16 ± 0.22 AB

(λpivot = 1.54µm). The F125W − F160W color (which corresponds approximately to rest-frame

V − R) of the new source is consistent with that of LS1, which has F125W − F160W = −0.11 ±

0.10 mag AB.

We consider that the new source could either be the counterimage of LS1, or a different

lensed star. As can be seen in Fig. 1, the pair of images of LS1’s host galaxy that meet at the

critical curve appear flipped relative to each other. These images are said to have opposite parity,

a property of lensed images set by the sign of the determinant of the lensing magnification matrix.

Assuming they are counterimages, Lev16B and LS1/Lev16A would have negative and positive

parity, respectively.

We have found from our ray-tracing simulations that the parity of an image of a lensed back-

ground star strongly affects its microlensing variations18. Extended Data Fig. 2 shows that, while

an image of a background star on LS1/Lev16A’s side of the critical curve always has magnification

of & 300, its counterimage on Lev16B’s side has extensive regions of much lower magnification

(∼ 30) in the source plane. If LS1 fell in such a low-magnification region on Lev16B’s side for

much of the period 2004–2017, that could explain why LS1/Lev16B was not detected except on

30 October 2016, as shown in Extended Data Fig. 7. A & 3 M� object, such as a stellar binary
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system, or a neutron star or black hole, can cause an image of a star to have low magnification for

sufficiently long periods on Lev16B’s side of the critical curve.

3 Properties of Lensed Star 1

If we assume that LS1/Lev16A and Lev16B are counterimages, then our model predicts each

has an average magnification of 600. Different cluster models, however, show a factor of ∼ 2

disagreement about the magnification at LS1’s position5–10. LS1 had F125W ≈ 28.15 mag in

2004–2008, corresponding to an absolute magnitude of MV = −9.0±0.75 (sys) for a magnification

of ∼ 600 per image.

Post-main-sequence stars in the Small Magellanic Cloud (SMC) that have U − B and B − V

colors approximately matching those of LS1 (−0.40 and −0.05 mag, respectively) have luminosi-

ties reaching MV & −8.8 mag19. The two statistically significant peaks in May 2016 could corre-

spond to a projected separation for a binary star system of ∼ 25 AU for a transverse velocity of

1000 km s−1 (see Methods).

If LS1 instead consists of an resolved pair of images, then the lensed star would need to have

an offset of . 0.06 pc of the caustic curve to be unresolved in HST imaging (see Methods). Its total

magnification would be ∼ 10000, corresponding to a star with MV ≈ −6 mag.
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4 Monte Carlo Simulation of Stellar Population Near Galaxy Cluster’s Caustic

We next perform simulations that allow us to estimate the probabilities (a) that LS1/Lev16A and

Lev16B are counterimages of each other, and (b) of discovering a lensed star in HST galaxy-cluster

observations. We use measurements of the arc underlying LS1’s position to estimate the number

and luminosities of stars near the galaxy cluster’s caustic. For different potential stellar luminosity

functions, we calculate the number of expected bright lensed stars and microlensing events.

The underlying arc extends for ∼ 0.2′′ (∼ 340 pc in the source plane) along the galaxy

cluster’s critical curve. If LS1/Lev16A and Lev16B are counterimages, then the lensed star is offset

from the caustic by 2.2 pc in the source plane according to our lensing model. In our simulation,

we populate the source plane region within 0.4′′ of the critical curve, or 21.9 pc from the caustic,

with stars.

We first need to infer the total luminosity in stars in the 21.9 pc × 340 pc region adjacent to

the galaxy cluster’s caustic. Gravitational lensing conserves the surface brightness, and we use the

arc’s F125W ≈ 25 mag arcsec−2 surface brightness to compute its absolute rest-frame V surface

brightness, which yields an estimate for the luminosity density of 120 L� pc−2.

The next step is to place stars in the 21.9 pc × 340 pc region adjacent to the caustic (within

0.4′′ of the critical curve), whose area of 7100 pc2 should enclose a total luminosity of 8.5×105 L�.

We consider power-law luminosity functions where the number of stars with luminosity between L

and L+dL is proportional to L−α dL. For luminosity functions with −1.5 ≤ α ≤ 3, we normalize the
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luminosity function so that the integrated luminosity equals 8.5×105 L� and compute the expected

number of stars in each 0.1 L� interval. We draw from a Poisson distribution to determine the

number of stars in each luminosity bin, and assign each star a random position within 21.9 pc of

the caustic.

We next compute the average magnification µ̄ of each star. For a lens consisting of only

smooth matter, the predicted magnification at an offset R in parsecs from the caustic is µ̄ =

880 /
√

R. Our ray-tracing simulations find that the average magnification deviates from this predic-

tion closer than ∼ 1.3 pc from the caustic curve (0.1′′ from the critical curve) due to microlensing.

To estimate µ̄ for stars closer than 0.10′′ to the critical curve, we interpolate in the image plane

between µ̄ = 5000 at the critical curve and µ̄ = 680 at an offset of 0.10′′.

Our next step is to estimate the number of bright microlensing peaks (F125W ≤26 mag) we

expect to find in existing HST observations of the MACS J1149 galaxy-cluster field. LS1 is ex-

pected to have a transverse velocity of order 1000 km s−1 relative to the cluster lens (see Methods),

which corresponds approximately to LS1/Lev16A’s two-week peak duration1. If HST observations

taken within a period of 10 days are counted as a single observation, then there were Nobs = 50 ob-

servations of the MACS J1149 field in all optical and IR wide-band filters through 13 April 2017,

and Nobs = 37 observations through 15 April 2016 just before the detection of LS1.

After taking into account stellar microlensing, the fraction of the source plane where the
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magnification exceeds µ is (Kaiser et al., in preparation)

fS (µ, µ̄) ≈ 2.5 × 10−4
(

κ

3 × 10−3

)(
µ̄

500

)3( µ
104

)−2

, (1)

where µ is the total amplification, κ is the surface density of stars making up the intracluster light

(ICL) in units of the critical density, and µ̄ is the expected magnification if the cluster consisted

entirely of smoothly distributed matter. Eq. 1 does not apply at offsets smaller than ∼ 1.3 pc from

the cluster caustic where the optical depth for microlensing exceeds unity. Our ray-tracing simula-

tions indicate, however, that the formula should provide a reasonable first-order approximation at

smaller distances from the caustic when we use our estimate of the average magnification µ̄ near

the critical curve18. The number of expected microlensing events with magnification exceeding µ

for each star will be Nobs × fS (µ, µ̄).

The simulations provide support for the hypothesis that Lev16A and Lev16B are counterim-

ages of LS1. Extended Data Fig. 4 shows that, if a star has an average apparent F125W brightness

of at least 27.7 mag similar to LS1, then it will be responsible for & 99% of F125W ≤26 mag

events. Likewise, Extended Data Fig. 5 shows that observing a bright lensed star sufficiently close

to the caustic that its images are unresolved (. 0.06 pc from the caustic) is a factor of ten less

probable than observing a resolved pair of bright images of a lensed star.

In nearby galaxies, the bright end of the luminosity function has a power law index of α ≈

2.5. Young star-forming regions such as 30 Doradus, however, can have shallower functions where

α ≈ 2. Extended Data Fig. 5 suggests that the probability of observing a persistent bright lensed

star (F125W ≤27.7 mag) in the underlying arc may be ∼ 10% in existing HST observations, given
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a shallow stellar luminosity function where α ≈ 2. For the steeper mean luminosity function

(α ≈ 2.5) measured for nearby galaxies20, we find a probability of 0.01–0.1%. The probability of

observing at least one bright (F125W ≤26 mag) microlensing event is ∼ 3% for α ≈ 2, and ∼ 0.1%

for α ≈ 2.5. We have repeated our simulation using the distribution of stars in 30 Doradus in the

Large Magellanic Cloud (LMC), which yields similar probabilities as for the case where α ≈ 2.

To estimate to first order the probability of finding a lensed star in all existing HST galaxy-

cluster observations, we make the simplifying assumption that all strong lensing arcs have proper-

ties similar to that underlying LS1. Of the total time used to image cluster fields with HST, only at

most ∼ 10% has been used to observe MACS J1149. Each of several dozen galaxy cluster fields

monitored by HST contains ∼ 4 giant arcs21. Consequently, to take into account all HST galaxy-

cluster observations, we need to multiply our above Monte Carlo probabilities by an approximate

factor of 10× 4 = 40. This suggests that the probability of finding a lensed star may be reasonable,

but only if the average stellar luminosity function at high redshift is shallower than α ≈ 2.5.

We note that we detected a new potential source (Lev 2017A) which has a ∼ 4σ significance

in the WFC3-IR imaging acquired on 3 January 2017, although the significance is only ∼ 2.5σ

considering all HST imaging and the independent apertures adjacent to the critical curve.

5 Multiple Limits on the Physical Size of Lensed Star 1

Each bright microlensing peak must correspond to light from an individual star in the source plane,

given the small area of high magnification adjacent to the microcaustics of intracluster stars. Ad-
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ditional considerations provide evidence that the persistent source, LS1, is too compact to be a

typical stellar cluster, and is instead a single stellar system (e.g., an individual star or a binary). If

LS1 consists of two unresolved counterimages at the location of the critical curve, then LS1 must

be more compact than ∼ 0.06 pc given the upper limit on its angular size (. 0.040′′; see Methods).

If Lev16A and Lev16B are instead mutual counterimages, the limit on LS1’s angular size

constrains it to have a physical dimension perpendicular to the caustic of . 1–2 pc, which is sig-

nificantly smaller than the typical size of a stellar cluster.

The absence of a persistent image at Lev16B’s position places a stronger potential limit

on LS1’s size. To explain the lack of a peristent counterimage at Lev16B’s location, all stars in a

hypothetical stellar association at LS1’s position would need to fall in a region of low magnification

on the Lev16B side of the critical curve. Ray-tracing simulations indicate that LS1 would need to

be smaller than ∼ 0.1 pc. A hypothetical dark matter (DM) subhalo, however, could also potentially

demagnify a counterimage at Lev16B’s position.

6 Inferences from LS1/Lev16A and Lev16B Assuming They Are Mutual Counterimages

We next compare the HST light curve for LS1/Lev16A and Lev16B with simulated light curves

created for different assumptions about intracluster stellar population and the abundance of 30 M�

primordial black holes (PBHs). In our ray-tracing simulations, LS1/Lev16A and Lev16B are coun-

terimages with average magnifications from the cluster of 600.
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We assume (a) all intracluster light (ICL) stars are single, or (b) apply mass-dependent binary

fractions and mass ratios22. We use a stellar-mass density of 6.3+10.3
−3.3 × 106 M� kpc−2 for a Chabrier

initial mass function (IMF), or higher densities estimated in an improved analysis of 1.1+0.3
−0.3 ×

107 M� kpc−2 and 1.9+0.6
−0.6 × 107 M� kpc−2 for Chabrier and Salpeter IMFs, respectively. The most

massive star that is still living found in the intracluster medium (ICM) at z = 0.54 is assumed to

have M = 1.5 M�. In Extended Data Figs. 8, 9, and 10, we plot the simulated light curves for an

R = 100 R� lensed star where we adopt the “Woosley02”23, “Fryer12”24, or “Spera15”25 models

of stellar evolution and core-collapse physics.

For steps of 50 km s−1 in the range 100–2000 km s−1, we stretch the simulated light curves

and identify the regions that best match the data. Table 1 lists the average χ2 value for the 150 best

matches 〈χ2〉. To interpret differences in 〈χ2〉 values, we fit simulated light curves, and compute

the difference ∆〈χ2〉 values between the 〈χ2〉 values of the generative (“true”) model and of the

best-fitting model. For 68% of simulated light curves, ∆〈χ2〉 . 13, and for 95% of simulated light

curves, ∆〈χ2〉 . 25.

For stars with −7.5 < MV < −9.5 mag, a range consistent with the most luminous stars in the

SMC and LMC given the uncertainty in magnification, models constructed using a prescription for

the binary fraction22 are favored over those where all stars are single (see Extended Data Fig. 11).

The 〈χ2〉 statistics also favor the Fryer12 stellar model, and a Salpeter IMF over a Chabrier IMF

(see Methods). The fitting also provides evidence against models where 1% and 3% of DM consists

of 30 M� PBHs26. Within the confidence intervals, the differences remain robust when extending
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the upper MV limit to −10.5 mag.

Table 1 also shows 〈χ2〉 values if we restrict the absolute magnitude to −7.5 < MV < −8.5

(for µ = 600), although such a low luminosity would be difficult to reconcile with LS1’s light

curve. The Fryer12 model and a Salpeter IMF are still favored, but there is no preference for the

binary prescription.

Although our confidence intervals assume that our estimates for the stellar-mass density and

magnification are correct, it may be reasonable to assume that differences in 〈χ2〉 values will be

robust to modest errors in these parameters. Our cluster model also does not include DM subhalos,

which could affect the average fluxes of the images. Although our fits do not favor models where

30 M� PBHs account for 1% or 3% of DM, PBHs consisting of & 3% of DM could produce a

slowly varying average magnification, and potentially explain the absence of flux at Lev16B’s

position.
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LS1 / Lev 2016A 
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LS1 / Lev 2016A + 
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Figure 1: Locations of lensing events coinciding with background spiral galaxy near the
MACS J1149 galaxy cluster’s critical curve. Left panel shows the positions of magnified images
of stars LS1 / Lev16A and Lev16B as well as candidate Lev 2017A close to (. 0.13′′) the critical
curve, where magnification rises rapidly. Dashed line shows the location of the critical curve from
the CATS cluster model8. The Einstein Cross formed from yellow point sources consists of im-
ages of SN Refsdal2. Right panel shows the field in 2014, and in May 2016 when LS1 exhibited a
microlensing peak.
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1ʺ

LS1/Lev16A

Figure 2: Proximity of LS1/Lev16A to the MACS J1149 galaxy-cluster critical curve for multiple
galaxy-cluster lens models. Critical curves for models with available high-resolution lens maps
including Ref. 8 (CATS; solid red), Ref. 27 (short-dash orange), Ref. 10 (solid blue), and Ref.
28 (long-dash black) are superposed on the HST WFC3-IR F125W image. Although predictions
for the location of the critical curve near LS1 disagree by ∼ 0.25′′, LS1 lies within ∼ 0.13′′ of all
of these models’ predictions.
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Figure 3: The SEDs of LS1 measured in 2013–2015 (red) and of the rescaled, excess flux density
at LS1’s position close to its May 2016 peak (Lev16A; black) are consistent. Rescaling the SED
of the flux excess to match to that of the 2013–2015 source yields χ2

ν = 1.5, indicating that they
are statistically consistent with each other despite a flux density difference of a factor of ∼ 4. The
SED shows a strong Balmer break consistent with the host-galaxy redshift of 1.49, and stellar
atmosphere models17 of a mid-to-late B-type star provide a reasonable fit. The blue curve has
T = 11, 180 K, log g = 2, AV = 0.02, and χ2 = 16.3; the orange curve has T = 12, 250 K,
log g = 4, AV = 0.08, and χ2 = 30.6; the black curve has T = 12, 375 K, log g = 2, AV = 0.08, and
χ2 = 12.9; and the green curve has T = 13, 591 K, log g = 4, AV = 0.13, and χ2 = 16.5. Black
circles show the expected flux density for each model.
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Fig. 3: Light curve of the magnified star LS1, and best-matching simulated light curves
during each interval. Fluxes measured through all wide-band HST filters are converted to
F125W using LS1’s SED. Upper panel shows LS1’s full HST light curve which begins in
2004. The lower panel shows the most densely sampled part of the light curve including
the May 2016 peak (Lev 2016A). This maximum shows two successive peaks that may
correspond to a lensed binary system of stars at redshift z = 1.49.

18

Figure 4: Light curve of the magnified star LS1, and best-matching simulated light curves dur-
ing each interval. Fluxes measured through all wide-band HST filters are converted to F125W
using LS1’s SED. The upper panel shows LS1’s full HST light curve which begins in 2004. The
lower panel shows the most densely sampled part of the light curve including the May 2016 peak
(Lev16A). This maximum shows two successive peaks that may correspond to a lensed binary
system of stars at z = 1.49.
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October 30 20162014
Lev 2016B

January 3 2017

LS1 / Lev 2016ALS1 / Lev 2016A LS1 / Lev 2016A

Lev 2017A

Figure 5: Highly magnified stellar images located near the MACS J1149 galaxy cluster’s critical
curve. The left panel shows LS1 in 2014; we detected LS1 when it temporarily brightened by a
factor of ∼ 4 in late-April 2016. The center panel shows the appearance of a new image dubbed
Lev16B on 30 October 2016. The solid red curve marks the location of the cluster’s critical curve
from the CATS cluster model8, and the dashed lines show the approximate 1σ uncertainty from
comparison of multiple cluster lens models5–10. The position is consistent with the possibility that
it is a counterimage of LS1. The right panel shows the candidate named Lev 2017A with ∼ 4σ
significance detected on 3 January 2017. If a microlensing peak, Lev 2017A must correspond to a
different star.
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−7.50 > MV > −9.50 −7.50 > MV > −8.50
150 Best Matches (406 yr) 150 Best Matches (406 yr)

〈χ2〉 Σ Model PBH T IMF 〈χ2〉 Σ Model PBH T IMF
Low Stellar-Mass Density

Best 356.0 L Fryer12 B Cha 416.3 L Fryer12 B Cha
366.5 L Woosley02 B Cha 462.1 L Spera15 S Cha
372.4 L Spera15 B Cha 464.0 L Woosley02 S Cha
383.6 L Woosley02 S Cha 488.9 L Spera15 3% S Cha
392.4 L Spera15 S Cha 516.5 L Woosley02 B Cha
403.0 L Fryer12 S Cha 534.0 L Spera15 B Cha
406.8 L Spera15 1% S Cha 560.6 L Fryer12 S Cha

Worst 462.4 L Spera15 3% S Cha 567.2 L Spera15 1% S Cha
High Stellar-Mass Density

Best 347.4 H Spera15 B Sal 412.1 H Spera15 B Sal
Worst 367.8 H Spera15 B Cha 508.3 H Spera15 B Cha

Table 1: Comparison between model light curves and observed 2004-2017 light curves for LS1
/ Lev16A and Lev16B. Measured 〈χ2〉 statistics provide evidence about the binary fraction and
IMF of the stellar population responsible for the intracluster light (ICL), distinguish among stellar
evolution and supernova models23–25, and disfavor the possibility that 1–3% of dark matter consists
of 30 M� PBHs. To interpret differences in 〈χ2〉 values, we fit simulated light curves, and compute
the difference ∆〈χ2〉 values between the 〈χ2〉 values of the generative (“true”) model and of the
best-fitting model. For 68% of simulated light curves, ∆〈χ2〉 . 13, and for 95% of simulated
light curves, ∆〈χ2〉 . 25. These simulations assume that our estimates for the galaxy cluster’s
magnification and stellar-mass density are correct. The Σ column denotes whether light curves
were computed with a low (L) or high (H) stellar-mass density. The “Type” column specified
whether the stars are single (S), or have the mass-dependent binary fraction and mass ratios of
stars determined at low redshift (B)22. The “IMF” column specifies whether a Chabrier (“Cha”) or
Salpeter (“Sal”) IMF was used to assemble the ICL stellar population.
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Methods:

HST Imaging. The HST observations include those from GO programs (and Principal In-

vestigators) 12065 (M. Postman), 13459 (T.T.), 13504 (J. Lotz), 13790 and 14208 (S.R.), and

14041, 14199, 14528, 14872, and 14922 (P.K.).

Constructing Light Curve. All optical and IR HST imaging of the MACS J1149 field with

moderate depth has yielded a detection of LS1. For each instrument and wide-band filter combi-

nation, we constructed a light curve for LS1. We first measured LS1’s flux in a deep template

coaddition of Hubble Frontier Fields and early SN Refsdal follow-up imaging. The Hubble Fron-

tier Fields program29 acquired deep imaging of the MACS J1149 galaxy cluster between Novem-

ber 2013 and May 2015 in the ACS WFC F435W (λc = 0.43µm), F606W (λc = 0.59µm), and

F814W (λc = 0.81µm), and the WFC3 IR F105W (λpivot = 1.05µm), F125W (λpivot = 1.25µm),

F140W (λpivot = 1.39µm), and F160W (λpivot = 1.54µm) wide-band filters. The second step was

to measure the differences in LS1’s flux between the deep template coadded image and at each

imaging epoch. We accomplished this latter step by subtracting the deep template coaddition from

coadditions of imaging at each epoch, and measuring the change in LS1’s flux from these resulting

difference images.

To measure LS1’s flux in each deep template coaddition, we first fit and then subtracted the

ICL surrounding the BCG. We next measured the flux at LS1’s position inside an aperture radius of

r = 0.10′′ using the PythonPhot package30. To measure the uncertainty in the background from
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the underlying arc, we placed a series of four nonoverlapping apertures having r = 0.10′′ along

it. We use the standard deviation of these aperture fluxes as an estimate of the uncertainty in the

background. Aperture corrections were calculated from coadditions of the standard stars P330E

and G191B2B31.

For each HST visit, we created a coadded image of all exposures acquired in each wide-

band filter. We next subtracted the deep template coaddition from the visit coaddition to create

a difference image. Using the PythonPhot package30, we measured the flux inside of an r =

0.10′′ circular aperture in the difference image. We finally computed the total flux at each epoch

by adding the flux measured from the deep template coaddition and that measured from each

difference image.

There is no source apparent at Lev16B’s position in deep template coadditions. Therefore,

we do not add any flux measured from the deep template coaddition to the light curve we construct

for Lev16B, which is plotted in Extended Data Fig. 7.

Estimating LS1’s Color. LS1’s brightness changed between the epochs when the deep

template imaging was acquired by the Hubble Frontier Fields and SN Refsdal follow-up programs.

However, the MACS J1149 cluster field was monitored using F125W (and F160W) with a ca-

dence of ∼ 2 weeks after the discovery of SN Refsdal in November 20142. We measured LS1’s

F125W light curve from these data, and performed a fit to the light curve using using a third-order

polynomial.
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We used the polynomial to estimate LS1’s F125W flux at the average epoch when the deep

template imaging in each detector and filter was acquired. The ratio between the F125W flux and

that in the other filter (e.g., F140W) provides a measurement of LS1’s color (F140W − F125W, in

this example). We restricted the Hubble Frontier Fields imaging to that taken between November

2014 and May 2015, since monitoring of SN Refsdal is available to construct LS1’s IR light curve

beginning in November 2014.

Creating a Combined Light Curve. We used our estimates of LS1’s color to convert the

light curves measured in all available optical and IR filters to F125W light curves, and combined

them. We also binned all F125W observations to construct the combined light curve plotted in

Fig. 4 and used to fit models.

Constraints on the Age of Stellar Population in Underlying Arc To compute models

using Flexible Stellar Population Synthesis (FSPS)32,33, we adopt a simple stellar population with

an instantaneous burst of star formation, and include nebular and continuum emission. We use

Python bindings (http://dan.iel.fm/python-fsps/current/) to FSPS to calculate simple stellar popu-

lations with a Kroupa IMF34 and a Cardelli extinction law35 with RV = 3.1. These models use the

Padova isochrones36,37.

A recent analysis finds a solar oxygen abundance of 12 + log(O/H) = 8.69 ± 0.05 dex and a

solar metallicity38 of Z = 0.0134. We therefore calculate models using log(Z/Z�) = −0.35, which
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corresponds to Z = 0.006 and is best matched with the FSPS parameter zmet = 15.

To estimate the age and dust extinction of the adjacent stellar population along the arc, we

use emcee39, which is an implementation of a Markov Chain Monte Carlo (MCMC) ensemble

sampler. We adopt a uniform prior on the stellar population age from 0 to 3 Gyr, and a uniform

prior on the extinction AV from 0 to 2 mag.

Ability to Detect Pair of Images of a Star Adjacent to Cluster Caustic. A possibility is

that we do not observe a pair of images of LS1, because it is very close to the cluster caustic and the

available HST imaging is not able to resolve its two images. Here we calculate how close the star

must be to the caustic. If LS1 lay very close to the critical curve, then Lev16B would correpond to

the microlensing event of a different star, at an offset of 0.26′′ from the cluster critical curve.

For a star sufficiently close to the caustic, the pair of images will not be resolved with HST.

Our simulations suggest that demagnifying one of the two images will be unlikely when the star

is close to the cluster caustic, although they do not include expected dark-matter subhalos. The

angular resolution of HST is greatest in the F606W band (λc = 0.59µm) and almost as sharp

in the F814W band (λc = 0.81µm), and observations in these wide-band filters provide the best

opportunity to test whether LS1 consists of two adjacent images. We use coadditions of imaging

taken by the Hubble Frontier Fields program. To determine the limit we can place on the separation

of two possible images, we inject pairs of point sources having the same combined magnitude as

the images made using the ACS WFC F606W and ACS WFC F814W exposures at each epoch.
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The full width at half-maximum intensity (FWHM) of our ACS point-spread-function (PSF)

models constructed from observations of the standard stars P330E and G191B2B only agree within

10% with the measured FWHM of the stars in our coadded images. Consequently, the measured

FWHM of the injected pairs of PSFs should not correspond directly to what we would we measure

in the ACS data. Therefore, we compute the fractional increase in the measured FWHM with the

increasing separation between the pair of injected PSFs. Next, we multiply the FWHM estimated

from the stars in each image by this factor to compute limits from the ACS imaging.

We inject 100 fake stars with the same magnitude using models of the ACS WFC F606W

and F814W PSF. After injecting the point sources in a grid, we use the IRAF task imexam to

estimate the Gaussian FWHM (GFWHM) using the “comma” command from the simulated data.

The imexam model we use has a Gaussian profile, and we specify three radius adjustments while

the fit is optimized. Pixels are fit within 3 pix (0.03′′ pix−1) of the center, and we use a background

buffer of 5 pix.

These simulations show that any separation between the two images greater than 0.035–

0.040′′ can be detected >95% of the time. The upper limit implies that the star would have to

be closer than 0.06 pc to the cluster caustic. As we show in Extended Data Fig. 5, the relative

probability of a persistently bright (F125W < 27.7 mag) star being located within 0.06 pc is . 10%.

DOLPHOT40 fit parameters for the images of LS1, Lev16B, and Lev 2017A fall in the range

expected for point sources in the DOLPHOT reference manual http://americano.dolphinsim.

com/dolphot/dolphot.pdf, although these criteria are not highly sensitive to a pair of images.
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Transverse Velocity of Star. We use the following expression [Equation 12 of Ref. 1] for

the apparent transverse velocity of a lensed source:

v⊥ =

∣∣∣∣∣ vs − vo

(1 + zs)
−

Ds(vl − v0)
Dl(1 + zl)

∣∣∣∣∣ , (2)

where Dl and Ds are the angular-diameter distances of the lens and source, and v0, vl, and vs are

(respectively) the transverse velocities of the observer, the lens, and the source with respect to the

caustic. The expression only applies for a universe without spatial curvature.

Cosmological simulations have found that merging galaxy-cluster halos and subhalos have

pairwise velocities of ∼ 500–1500 km s−1 with tails to lower and higher velocity41. Given the

expected velocity of the lens, the peculiar velocities of Earth (∼ 400 km s−1) and of the host galaxy

relative to the Hubble flow, and the motion of the star (< 200–300 km s−1) relative to its host galaxy,

a typical transverse velocity should be 1000 km s−1. In our light-curve fitting analysis, we consider

transverse velocities of 100–2000 km s−1.

Intrinsic Luminosity of Lensed Star. While extremely luminous stars are rare in the

nearby universe, they require smaller magnification and can be at a greater distance from the caus-

tic. For a lens with a smooth distribution of matter, the magnification µ falls within the distance d

from the caustic as µ ∝ 1/
√

d. Therefore, the area A in the source plane in which the magnification

is greater than µ scales as A(> µ) ∝ 1/µ2. The observed flux F of a lensed object is F ∝ Lµ, where

the object’s luminosity is L. Therefore, a star with luminosity L appears brighter than f inside an

area A(> f ; L) ∝ L2.
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Galaxy-Cluster Lens Model. Prior to the identification of LS1 in late-April 2016, the clus-

ter potential had been modeled using the codes LTM27,42, WSLAP+7, GLAFIC5,10,43, LENSTOOL6,8,44,

and GLEE9,45,46. These used several different sets of multiply imaged galaxies11, which included

new data from the Grism-Lensed Survey from Space (GLASS; PI Treu)47,48, MUSE (PI Grillo)9,

and grism follow-up observations of SN Refsdal (PI Kelly)49.

In Fig. 5, we plot as an example the position of the critical curve from the CATS model8

created using LENSTOOL44, showing that it passes close to the position of LS1. The critical

curves of all of these models, however, pass within similarly small offsets from LS1’s coordinates.

For the simulation of the light curves of a star passing close to the cluster caustic, we use the

WSLAP+ model of the cluster mass distribution7 and draw stars randomly from a Chabrier IMF50

until the stellar mass density equals the value we estimate of 1.1+0.3
−0.3 × 107 M� kpc−2 for a Chabrier

IMF and 1.9+0.6
−0.6 × 107 M� kpc−2 for a Salpeter IMF.

The WSLAP+ cluster lens model, which includes only smoothly distributed matter and cluster

galaxies, yields several important relations describing the magnification near the critical curve, and

the relationship between lensed θ and unlensed β angles. The magnification µ̄ for a smooth cluster

model [e.g., Eq. 35 of Ref. 51] can be described as µ̄ = 155/θ, where θ is the observed angular

offset from the critical curve in arcseconds, and µ̄ = 19/
√
β relates the unlensed angular position

β and µ̄. The angles β and θ follow the relation β = θ2/66.5, and both β and θ are in units of

arcseconds.
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We simulate the light curves of caustic-crossing events using a resolution of 1 µarcsec per

pixel over an area of ∼ 83 pc× 6.5 pc in the lens plane. This area is aligned in the direction

where a background source moving toward the cluster caustic would appear to be moving. If

the background star is moving with an apparent velocity of 1000 km s−1 in the source plane, its

associated counterimage would take ∼ 400 yr to cross the 83 pc of the simulated region, which

corresponds to (1.2 × 10−7)′′ yr−1. The lensed star is given a transverse velocity of 1000 km s−1 in

the source plane; the resulting light curve can be streched to simulate different transverse velocities.

Owing to the high magnification, the counterimages’ apparent motion in the image plane is large.

N-body simulations show that clusters of galaxies contain (and are surrounded by) a large

number of subhalos. Smaller subhalos near the cluster center may not survive the tidal forces of

the cluster and are easily disrupted. The larger surviving halos and smaller subhalos along the

line of sight can produce small distortions in the deflection field that could in principle distort the

critical curve (and caustic). Lens models of MACS J1149 do predict such distortions around the

member galaxies. However, since the typical scales of the distortion in the deflection field are

proportional to the square root of the mass of the lens, the distortions from the surviving halos are

orders of magnitude larger than the scale of the distortion associated to the microlenses (from the

ICL). Consequently, on the scales relevant for this work (∼ 0.2′′), the combined deflection field of

the cluster plus the DM substructure can still be considered as a smooth distribution and the critical

curve could still be well approximated by a straight line.

For a cluster model populated with stars in the ICM, Extended Data Fig. 14 shows the “trains”
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or multiple counterimages of a single background star near the cluster’s caustic. Replacing the

cluster’s smoothly varying matter distribution with an increasing fraction of ∼ 30 M� PBHs yields

an increasingly long train, although its expected extent (∼ 3 milliarcsec) when PBHs account for

10% of DM would be smaller than would be possible to detect in the HST imaging.

Initial Mass Function for Stellar and Substellar Objects. Strong lensing and kinematic52–55,

as well as spectroscopic56,57 analyses of early-type galaxies have found evidence that the IMF of

stars in early-type galaxies may be “bottom-heavy” – a larger fraction of stars have subsolar masses

than is observed in the Milky Way. Spectroscopic evidence for a Salpeter-like bottom-heavy IMF

in the inner regions of early-type galaxies comes from the strength of spectral features sensitive

to the surface gravity of stars with M . 0.3 M�
56,57. However, these two sets of diagnostics do

not always show agreement in the same galaxies, and the discrepancy is not yet understood58.

In Extended Data Fig. 9, we show that a Salpeter IMF yields a substantially higher frequency of

microlensing peaks than a Chabrier IMF.

In stellar kinematics and strong lensing, the DM is assumed to follow a simple parameteric

(e.g., power-law) function near the galaxy center, while stellar matter is assumed to trace the optical

emission. The total matter profile inferred from observations is decomposed into stellar and DM

components, and the M∗/L ratio of the stellar component is used to place constraints on the IMF.

Substellar objects having masses below the H-burning limit (M ≈ 0.08 M�) are not generally

included as a component of the stellar mass in kinematic and lensing analyses. Substellar masses,

45



however, should also trace the stellar mass distribution. The inferred M∗/L ratios near the centers of

elliptical galaxies are approximately twice as large as those expected for Milky-Way-like Chabrier

IMFs, e.g., Refs. 52–54. If the stellar IMF in early-type galaxies has a Salpeter slope, the ratio of

∼ 2 would imply that a Salpeter IMF cannot extend to object masses significantly smaller than the

H-burning limit59.

Indeed, the integral of the Salpeter IMF from zero mass through the H-burning limit diverges,

so the IMF of substellar objects must be less steep than Salpeter below the 0.08 M�. The integral

of a Chabrier IMF in the range 0 < M < 0.10 M� is . 10% of the integral in 0.10 < M < 100 M�.

High signal-to-noise-ratio spectra of NGC 1407 are best fit by a super-Salpeter IMF (Γ = 1.7;

dN/d log m ∝ m−Γ) to the H-burning limit60.

In the Milky Way, surveys of substellar objects find that their mass function is likely flat

or declining with decreasing mass. IR imaging of the young Milky-Way cluster IC 348 yields

a population of brown dwarf stars consistent with log-normal mass distribution61. Γ = 0.0 and

Γ = −0.3 provide a reasonable fit to the populations of objects with masses smaller than 0.1 M�

in IC 348 and Rho Oph, respectively. Analysis of the Pleiades open clusters to 0.03 M� found a

population consistent with a log-normal distribution with mc = 0.25 M� and σlog m = 0.5262.

For this analysis, we only include objects with initial masses greater than 0.01 M�. For the

light curves generated with a Chabrier IMF, we assume that the IMF continues to this lower-mass

cutoff. For the Salpeter light curves, the Salpeter form truncates at 0.05 M�; for lower initial

masses, we assume that the number density of objects is constant in logarithmic intervals.
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Mass Function of Surviving Stars and Compact Remnants in the ICM. For a given a

star-formation history, GALAXEV computes the mass in surviving stars and in remnants using

the Renzini93 prescription for the mapping between zero-age main-sequence masses and remnant

masses (the initial–final mass function)63. Dead stars with initial masses Mi < 8.5 M� become

white dwarfs with mass 0.077 M� + 0.48 Mi; those with 8.5 M� ≤ Mi < 40 M� become 1.4 M�

neutron stars; and those with Mi ≥ 40 M� become BHs with 0.5 Mi.

We assume that the most massive surviving star found in the ICM at z = 0.54 has a mass of

1.5 M�, approximately the expected value for a ∼ 4.5 Gyr stellar population. For stars with masses

& 1.5 M�, we use three separate theoretical initial–final mass functions to compute the distribution

of remnant masses.

The evolution of massive stars and the mass of their remnants is expected to depend on the

stars’ mass-loss rate, which is thought to vary significantly with their metallicity. Integral field-unit

(IFU) spectroscopy of low-redshift galaxy clusters has been able to place approximate constraints

on the metallicity and age of the stars found in the ICM. IFU spectroscopy within ∼ 75 kpc of the

BCGs of the nearby Abell 85, Abell 2457, and II Zw 108 galaxy clusters found that the ICL light

can be best fit by a combination of substantial contributions from an old population (∼ 13 Gyr)

with high metallicity (Z ≈ 2 Z�) and from a younger population (∼ 5 Gyr) with low metallicity

(Z ≈ 0.5 Z�)64.
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Light-Curve Fitting. To fit the LS1 / Lev16A and Lev16B light curves, we identify the

peaks in the simulated light curves that are 2σ above each light curve’s mean magnification. We

next stretch the model light curves in time for transverse velocities in the range 100–2000 km s−1 in

steps of 50 km s−1. For each light curve and velocity, we find a best-fitting solution for a series of

intervals in absolute magnitudes between MV = −7 and MV = −10.5 mag in increments of 0.5 mag.

For each interval and peak, we find the best-fitting value of MV within the upper and lower bounds

in luminosity.

For the set of fits at each transverse velocity and each MV interval, we rank all peaks accord-

ing to the χ2 values separately for LS1 / Lev16A and Lev16B. We then pair these ranked lists of

best-fitting peaks (i.e., the best-fitting peak for LS1 / Lev16A is matched with that for Lev16B,

etc.), and add the χ2 values for each pair together. Next, we identify the best χ2 values for all

values of transverse velocity and ranges in absolute luminosity, and assemble a list of these best χ2

values. Our goodness-of-fit statistic 〈χ2〉 is the average of the 150 best χ2 values.

Interpreting the χ2 Statistic Using Simulated Light Curves. To interpret the 〈χ2〉 values,

we generate fake light curves for each of the models listed in Table 1. The simulation for each

model yields a magnification over a 406 yr period for a transverse velocity of 1000 km s−1. For

lensed stars with absolute magnitudes MV of −8, −9, and −10, we create simulated apparent light

curves, and we append the light curve after reversing the temporal axis to create effectively an

812 yr light curve.

48



For each simulated light curve, we identify all peaks where the apparent F125W AB magni-

tude is brighter than 26.5 mag. For each peak, we randomly select a transverse velocity drawn from

a uniform distribution in the interval 100–2000 km s−1. We use the cadence and flux uncertainties

of the measured light curve of LS1 to generate a fake light curve. We next shift the peak of the

measured light curve of LS1 / Lev16A (or Lev16B) to match the peak of the simulated model light

curve. We then create a fake observation by sampling the simulated light curve at the same epochs

as the actual measurements, and adding Gaussian noise matching the measurement uncertainties.

For each such simulated light curve, we compute the 〈χ2〉 statistic using the full set of models.

The region of the simulated light curve used to created the fake data set is excluded from fitting.

As shown in Extended Data Fig. 13, the combined 〈χ2〉 statistic we measure for LS1 / Lev16A and

Lev16B falls inside of the expected range of values. We note that a significant fraction of simulated

light curves have average values of 〈χ2〉 >1000, implying that they are not well-fit by other regions

of the simulated light curves.

For all simulated light curve where the average 〈χ2〉 value is within 100 of the value we

measure for LS1 / Lev16A and Lev16B, we calculate the difference ∆〈χ2〉 values between the 〈χ2〉

values of the generative (“true”) model and of the best-fitting model. For 68% of simulated light

curves, ∆〈χ2〉 . 13, and, for 95% of simulated light curves, ∆〈χ2〉 . 25.

Massive Stellar Evolution Models The fates of massive stars remain poorly understood

owing to the complexity of massive stellar evolution and the physics of supernova (SN) explo-
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sions. Indirect evidence suggests that a fraction of massive stars may collapse directly to a black

hole instead of exploding successfully65,66, due to (for example) failure of the neutrino mecha-

nism67. We compute light curves and magnification maps using three sets of predictions for the

initial–final mass function23–25. As a first model, we adopt the initial–final mass function predicted

by the solar-metallicity, single stellar evolution models23 (Woosley02) [Fig. 9 of Ref. 24]. In the

Woosley02 models, the prescription for driven mass-loss rate at solar metallicity causes stars with

initial masses & 33 M� to end their lives with significantly reduced He core masses, leading such

stars to become BH remnants with masses no larger than 5–10 M�. The Woosley02 mass-loss pre-

scription uses theoretical models of radiation-driven winds for OB-type stars with T > 15, 000 K,

and empirical estimates for Wolf-Rayet stars68 that have been adjusted downward by a factor of

three to account for the effects of clumping in the stellar wind69. The mass-loss rate for single O-

type stars during their main-sequence evolution may have been overestimated by a factor of 2–3,

owing to unmodeled clumping in their winds70.

A second (Fryer12) initial–final mass function was computed for single stars at subsolar

metallicity (Z = 0.3 Z�; Z = 0.006) [the “DELAYED” curve in Fig. 11 of Ref. 24]. These predic-

tions use the StarTrack population synthesis code71,72. According to this model, BHs with masses

up to 30 M� form from the collapse of massive stars.

Finally, we use a third initial–final mass function (Spera15) [Fig. 6 of Ref. 25] to calculate

the masses of remnants for the stellar population making up the ICM. The Spera15 relation we

adopt was computed using the PARSEC evolution tracks for stars with metallicity Z = 0.006, and
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explosion models where the SN is “delayed,” occurring & 0.5 s after the initial bounce. According

to the Spera15 initial–final mass relation we adopt, stars having initial masses & 33 M� become

BHs with masses within the range 20–50 M�. Approximately 70% of massive stars exchange

mass with a companion, while ∼ 1/3 of stars will merge73. It is also possible that the success of

explosions is not related in a simple way to the stars’ initial mass or density structure, given the

potentially complex dependence of the critical neutrino luminosity for a successful explosion on

these progenitor properties67.

Observations of Similar Cluster Fields with HST. Massive galaxy clusters have been the

target of extensive HST imaging and grism-spectroscopy campaigns in the last several years, and

these need to be taken into account when considering the probability of finding a highly magnified

star microlensed by stars making up the ICL. Detecting transients requires at least two separate

observing epochs, which is possible only for programs designed with more than a single visit, or

when archival imaging is available. In addition to smaller search efforts74, large programs have

been the Cluster Lensing and Supernova survey with Hubble (CLASH)75, the GLASS47,48, the

Hubble Frontier Fields29, and the Reionization Lensing Cluster Survey (RELICS). Transients in

Hubble Frontier Fields and GLASS imaging have been subsequently observed by the FrontierSN

program.

With a total of 524 orbits, CLASH acquired imaging of 25 galaxy-cluster fields. A search

for transients in the CLASH imaging made use of template archival imaging when available. The

survey acquired imaging over a period of three months of each cluster field with repeated visits in
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each filter. Each epoch had an integration time of 1000–1500 s. The systematic search for transients

in CLASH imaging had near-infrared limiting magnitudes at each epoch of F125W ≈ 26.6 and

F160W ≈ 26.7 mag AB [see Tab. 1 of Ref. 76].

The Hubble Frontier Fields program used 140 orbits to observe each of 6 galaxy-cluster

fields (total of 840 orbits). For each cluster, ACS optical and WFC3 IR imaging split into in two

campaigns, each of which lasted for approximately a month. These were separated from each

other by a period of ∼ 6 months to allow the telescope roll angles to differ by ∼ 180◦, to image

a parallel field adjacent to the cluster with the same instruments. Each of six to twelve epochs

in each WFC3 IR wideband filter for each cluster field had an integration time of ∼ 5500 s. The

systematic search for transients in near-infrared Hubble Frontier Field imaging by the FrontierSN

team (PI: Rodney) had near-infrared limiting magnitudes at each epoch of F125W ≈ 27.5 and

F160W ≈ 27.2 mag AB.

The GLASS survey47,48 acquired WFC3 IR grism spectroscopy of ten galaxy-cluster fields

over 140 orbits. The survey acquired direct pre-imaging in the WFC3 IR F105W and F140W over

four epochs

The probability of observing a luminous star adjacent to a caustic will depend on the number

of lensed galaxies that overlap a galaxy cluster’s caustic. For massive clusters, caustic curves

coincide with the ICL, so magnified stars should exhibit microlensing fluctuations. Earlier work

has estimated that a 105 L� star (MV ≈ −7.5 mag) in a giant arc (with z = 0.7) and crossing the

caustic of cluster Abell 370 (z = 0.375), a Hubble Frontier Fields target, would remain brighter
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than V = 28 mag for 700 yr, given a V-band limiting magnitude of 28 and a 300 km s−1 transverse

velocity1.

A study of HST imaging of CLASH galaxy-cluster fields21 has found that each cluster field

contains 4±1 giant arcs with length ≥ 6′′ and length-to-width ratio ≥ 7. Given that the host galaxy

of LS1 would not be classified as a giant arc according to these criteria, it is likely that additional

galaxies in each field may lie on the cluster caustic.

An approximate census finds that . 10% of HST galaxy-cluster observing time has been used

to image MACS J1149. Considering the full set of HST cluster observations, and the results of our

Monte Carlo simulations for the single arc underlying LS1 (1–3% for a shallow α ≈ 2 luminosity

function; 0.01–0.1% for α ≈ 2.5), the probability of observing at least one bright magnified star

adjacent to a critical curve should be appreciable, in particular if the average luminosity function

is more shallow at high redshifts than in the nearby universe.
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Supplementary Information:

Simulation Using Stars Near Center of 30 Doradus. We used the SIMBAD (http://simbad.u-

strasbg.fr/simbad/) catalog to retrieve information for objects in the H ii region 30 Doradus in the

LMC. Stars were first selected from the catalog having V-band magnitudes and closer than 20′ to

its center (∼ 280 pc). We include objects classified as stars, and exclude F,G,K, or M type stars

unless they are classified as supergiants. Using a distance of 49 kpc to the LMC, we calculated

the stars’ absolute magnitudes MV , and their distances from the center of the cluster. For 10,000

trials, we randomly placed the cluster’s CC within 20 pc of the 30 Doradus’ center, and rotated

the stars around the center of 30 Doradus by an angle drawn from a uniform distribution. We find

a probability of ∼ 1% of finding a star with a persistent average brightness of at least 27.7 mag,

and we find that such a star will also be responsible for & 99% of <26 mag microlensing events.

These probabilities are similar to those we estimated from our simulation where the positions of

luminous stars near the CC were drawn randomly from a uniform distribution

Slope of Stellar Luminosity Function in 30 Doradus. We have also used the SIMBAD

catalog of stellar sources to estimate the stellar luminosity function of bright stars in 30 Doradus.

Placing stars in 0.5 mag bins by their absolute V-band magnitudes, we measure a power-law index

of α ≈ −2. No correction is applied for crowding, or the binary fraction.
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Slope of the Stellar Luminosity Function in Nearby Galaxies. Stars found in OB associ-

ations in seven nearby galaxies observed with HST show a luminosity function of α = 2.53±0.0820.

The stellar luminosity function for stars more luminous than MV < −8.5 mag is not well con-

strained, the number counts of the MV < −8.5 mag stars in this study are consistent with the slope

measured for stars with −8.5 < MV < −5 mag. The slope of α = 2.53 ± 0.08 agrees approxi-

mately with a separate earlier analysis77, which studied the slope of the upper end of the stellar

luminosity function of the bluest stars in nearby galaxies using ground-based imaging and found

α = 2.68 ± 0.08, although the latter analysis extended only to MV ≈ −9.5 mag [see Fig. 7 of Ref.

77]. A second census of the stellar population in galaxy M101 shows that it may host a small

number of luminous stars with absolute magnitude −10 . MV . −11 [see Fig. 7 of Ref. 78].

The luminosity function of OB associations79 can be well described by a power-law function

having an index α ≈ 2. The luminosity function of star-forming regions may become flatter in

galaxies with higher star-formation rates and star-formation rate densities80.

Ground-Based Follow-up Campaigns. We observed the field with direct imaging with

the Low Resolution Imaging Spectrometer (LRIS)81 on the Keck-I 10 m telescope on 6 May 2016

(PI Filippenko). Director’s Discretionary programs with the GTC (PI Pérez González; GTC2016-

052), the Very Large Telescope (PI Selsing; 297.A-5026), Gemini North (PI Kelly; GN-2016A-

DD-8), and the Discovery Channel Telescope (PI Cenko) obtained follow-up imaging in optical

bandpasses.
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Detection from the Ground with the Gran Telescopio Canarias. We obtained i’-band

observations of the MACS J1149 field with the 10.4 m Gran Telescopio Canarias (GTC) on 6 June

2016 and 7 June 2016, after the May 2016 peak. To estimate the flux at LS1’s position, we extracted

the flux inside several apertures with diameters within 1–2 times the the PSF FWHM, and applied

aperture corrections to obtain integrated fluxes. The flux estimates for the different apertures agree

within 0.10–0.15 mag. The i’-band AB magnitudes are 27.73 ± 0.52 on 57544.9381 MJD in con-

ditions with 1.0′′ seeing and a total integration of 3000 s, and 28.35 ± 0.43 on 57546.9445 MJD in

0.8′′ seeing and a total integration of 5430 s.

Metallicity of the Local Host-Galaxy Environment of LS1. The gas-phase oxygen abun-

dance of LS1’s host galaxy, including that within the immediate environment of SN Refsdal, has

been studied using multiple datasets. LS1 and SN Refsdal have similar offsets from the host nu-

cleus (within ∼ 0.5 kpc), so the local metallicity near LS1’s and SN Refsdal’s host-galaxy locations

should have similar values. Both the CATS model8 (∼ 6.7 kpc and ∼ 7.3 kpc, respectively) and the

GLAFIC model10 (∼ 7.9 kpc and ∼ 8.2 kpc) find similar nuclear offsets for LS1 and SN Refsdal.

Analysis of Keck-II OSIRIS integral-field unit (IFU) spectra reported a 3σ upper limit of

12 + log(O/H) < 8.67 dex in the Pettini & Pagel N2 calibration82 for an H ii region ∼ 200 pc away

from SN Refsdal’s site. From the same observations, the authors find a combined upper limit of

12 + log(O/H) < 8.11 dex from observations of nine H ii regions at nuclear offsets between ∼ 5

and ∼ 7 kpc83, which is similar to the offsets of LS1 and SN Refsdal.
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Recent work84 has analyzed WFC3 grism spectra taken by GLASS47,48 and follow-up obser-

vations of SN Refsdal. They fit the abundance measurement using a linear model,

12 + log(O/H) = (−0.0666 ± 0.0232) × r + 8.82 ± 0.039 dex, (3)

where r is the offset from the nucleus in kpc. This yields an abundance at LS1’s offset (assuming

7.9 ± 0.5 kpc) of 12 + log(O/H) = 8.29 ± 0.19 dex. This analysis does not take into account the

[N ii] line when estimating the oxygen abundance, as it can be a biased tracer at z > 185.

Finally, while [N ii] was not detected in the OSIRIS IFU spectra of the site of SN Refsdal83,

a 1 hr Keck-II MOSFIRE integration yielded a [N ii] detection. The [N ii] line strength yields a

PP04 N2 oxygen abundance of 12 + log(O/H) = 8.3 ± 0.1 dex49, which is in agreement with the

above estimate made using the Maiolino calibration86 from WFC3 grism spectra.

Given the above grism as well as MOSFIRE [N ii] metallicity estimates, we use an oxygen

abundance of 12 + log(O/H) ≈ 8.3 dex as the metallicity of the massive stellar population near

LS1’s coordinates. The Castelli & Kurucz 2004 stellar atmosphere models17 are parameterised

based on the Grevesse & Sauval 199887 solar oxygen abundance of 12 + log(O/H) = 8.83±0.06 dex.

Therefore, we adopt log(Z/Z�) = −0.5 when drawing comparisons with the Castelli & Kurucz

ATLAS9 models.

K-correction and Distance Modulus. We calculate K-corrections following Equation 2

of Ref. 88,

K = 2.5 × log10(1 + z) + mAB
F125W,syn − mVega

V,syn, (4)
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where z = 1.49, mAB
F125W,syn is the WFC3 F125W synthetic magnitude of a redshifted model spec-

trum, and mVega
V,syn is the synthetic Johnson V-band magnitude of the rest-frame model spectrum. Here

the K-correction Kxy is defined as

my = Mx + dm + Kxy, (5)

where my is the observer-frame apparent magnitude in the y band, Mx is the rest-frame absolute

magnitude in the x band, and dm is the distance modulus. Using the best-fitting spectral models,

we calculate KV,F125W =−1.10 mag, and adopt dm = 45.21 mag at z = 1.49 (with no correction for

magnification).

Stellar-Mass Density Along the Line of Sight to LS1. We computed two separate esti-

mates of the stellar-mass density to LS1. The first estimate was the value we used when we created

most of the simulated light curves, but it excluded light from the nearby brightest cluster galaxy

(BCG). We computed a second, improved estimate that accounted for all intracluster light (ICL)

along the line of sight. The updated analysis yielded a density approximately twice as high as the

initial value.

Initial Estimate: Galaxies with mF160W < 26 AB mag are selected and fit with single Sérsic

profiles by using GALFIT89 in a postage stamp (300 pix × 300 pix). At the same time, the local

sky background, assumed to be constant across the stamp, is fitted with the galaxy light profile.

After fitting all the galaxies in the field, we reconstruct the ICL map by using the estimated local

sky background values. Overlapping pixels are stacked, weighted by the χ2
ν value from the fit.
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The uncertainty is estimated from the original root-mean-square (RMS) map (published by the

Hubble Frontier Fields team) and the systematic differences caused by changing the stamp size.

We repeat this procedure for the ACS WFC F435W, F606W, F814W, and WFC3 IR F105W,

F125W, F140W, and F160W filter bands90. A correction is applied for Galactic extinction91.

Stellar mass is estimated in each pixel using the Fitting and Assessment of Synthetic Tem-

plates (FAST) software tool92 with the BC0393 stellar population model. FAST uses the Galaxy

Spectral Evolution Library (GALAXEV; http://www.bruzual.org/) code to assemble composite

stellar populations. We use the BC03 isochrones, a Chabrier IMF, and an exponentially declin-

ing star-formation history. Stars have initial masses that are between 0.1 and 100 M�, and models

are computed for metallicities of 0.004, 0.008, 0.02, and 0.05. The hot gas in the galaxy-cluster

ICM is thought to destroy dust, and extinction from dust is assumed to be zero. We note, however,

that allowing the dust extinction to be a free parameter would change the estimated stellar mass by

< 1%.

Revised Estimate: We calculated a second estimate for the stellar-mass density that includes

the contribution of stellar light associated with the BCG. We first constructed a total of eight

apertures around the BCG shown in Extended Data Fig. 12. The apertures’ offsets from the BCG

center and F140W surface brightnesses are similar to those of LS1, and were selected to exclude

point sources and cluster-member galaxies (except the BCG).

We estimate ACS WFC F435W, F606W, F814W, and WFC3 IR F105W, F125W, F140W,

and F160W fluxes within each aperture, and apply a correction for Galactic extinction91. We next
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determine the ratio between the stellar mass (M∗) and the WFC3-IR F140W flux (L) within each

aperture. We estimate M∗ with FAST92 and the BC0393 stellar population synthesis models. We

adopt a delayed exponentially declining star-formation history and include both subsolar and solar

metallicity (∼ 0.02 and 0.008) populations. Separate model fits are made for Chabrier and Salpeter

IMFs, and the stars in our BC03 population synthesis models have initial masses that are between

0.1 and 100 M�.

Within each aperture, the statistical uncertainties of the total WFC3-IR flux in each bandpass

are . 0.5%. Among fits within the apertures, the average e-folding time is ∼ 600 Myr, and, at

redshift z = 0.54, the stellar population ages are, on average, ∼ 4 Gyr. The uncertainty in M?/L for

each aperture is ∼ 30%, which approximately equals the standard deviation among the best-fitting

estimates for all apertures.

To estimate the stellar-mass density along the line of sight to LS1, we multiply the mean

M∗/L computed across all eight apertures by the average F140W surface brightness in the two

apertures adjacent to LS1. These apertures adjacent to LS1 may contain contamination in observer-

frame optical bandpasses from the underlying, young lensed galaxy. Within the WFC3-IR F140W

bandpass, however, light from the cluster dominates.

For Chabrier and Salpeter IMFs, the stellar mass densities computed using the BC03 model

are 1.1+0.3
−0.3 × 107 M� kpc−2 and 1.9+0.6

−0.6 × 107 M� kpc−2, respectively. These revised estimates as

well as our initial estimate for the density include remnants, whose masses are computed using

the Renzini “initial–final” mass function63. The total local projected mass density inferred from
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cluster models7,8,27 is ∼ 2 × 109 M� kpc−2.
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Extended Data Fig. 1: Constraints on the age and dust extinction of the stellar population along
the lensed arc adjacent to LS1. LS1’s flux was measured in the circular cyan aperture and the
background measured inside of the red dashed aperture shown in upper-left panel. Upper-right
panel plots the SED of the underlying arc measured inside the aperture outlined by a blue boundary,
after subtracting the background measured in the aperture outlined in magenta. Bottom panel
shows the posterior probability distributions of the age and extinction AV of the stellar population.
Spectra of the host galaxy favor a gas-phase metallicity of Z ≈ −0.3. At such a metallicity, we
find a bimodel posterior probability distribution with peaks at ∼ 8 and ∼ 35 Myr. An age of
∼ 8 Myr would be consistent with the age of a blue supergiant star. The stellar population synthesis
model is constructed using the Padova isochrones36,37, and we apply a Cardelli extinction law with
RV = 3.135.
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Extended Data Fig. 2: Distinct magnification patterns for respective counterimages Lev16B (upper
panel) and LS1/Lev16A (lower panel) of LS1 within the source-plane host galaxy at redshift z =

1.49 from a ray-tracing simulation. Extensive regions of low magnification (.100) for negative-
parity image Lev16A could explain why it is undetected in HST imaging acquired in all except a
single epoch acquired from 2004 through 2017. The map for positive-parity image LS1/Lev16A
lacks such regions of extensive low magnification, and it always detected in deep imaging. Plotted
angular scale is in the source plane, and one µarcsec in each panel corresponds to a physical
8.6 × 10−3 pc at redshift z = 1.49. If LS1 has an apparent transverse velocity of 1000 km s−1, it
would travel 1µarcsecond in 8.6 observer-frame years. These ray-tracing simulations are realistic
if Lev16B and LS1/Lev16A are mutual counterimages offset by 0.13′′ on opposite sides of the
galaxy cluster’s critical curve in the image plane, and each of the counterimages has an average
magnification of 600. The galaxy-cluster caustic, which is offset by 2.1 pc from these maps, is
oriented parallel to the horizontal axes of each panel. The different patterns of magnification
correspond to the parity of the image; Lev16B has negative parity, while LS1/Lev16A has positive
parity. Here we have created a random realization of foreground intracluster stars and remnants
having a mass-density (1.9+0.6

−0.6 × 107 M� kpc−2) matching that we infer for a Salpeter IMF.
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1ʺ

LS1

Extended Data Fig. 3: Predicted position of LS1 in separate, full image of its host galaxy created
by MACS J1149 galaxy-cluster lens. The cluster lens create three images of the host galaxy at
redshift z = 1.49. We detected LS1 adjacent to the critical curve separating two partial, merging
images which have opposite parity. The third, full image shown here is at a greater distance from
the cluster center, and it shows that LS1 lies close to the tip of a spiral arm.
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Extended Data Fig. 4: When a lensed star has a bright average apparent magnitude (F125W <
27.7 mag), it will also be responsible for almost all bright microlensing peaks (F125W < 26 mag)
observed near the critical curve for simple assumptions. Here we plot the fraction of bright peaks
caused by the bright star against the index of the stellar luminosity function. Since & 99% of
events likely arise from the luminous star, it is likely that Lev16B corresponds to the same star as
LS1. However, this simulation randomly assigns positions to massive stars. To determine whether
the observed clustering of massive stars could yield a greater probability that LS 1 / Lev16A and
Lev16B are different stars, we carry out a simulation instead using the observed absolute magni-
tudes and positions of stars in the 30 Doradus cluster in the LMC from the SIMBAD catalog, and
find a similarly low probability.

65



2 1 0 1
Luminosity Function Power-Law Index 

10 5

10 4

10 3

10 2

10 1

Pr
ob

ab
ili

ty

One <26 mag Event (50 Visits)
Two <26 mag Events (50 Visits)
Persistent Star Image <27.7 mag
Near Caustic <0.06 pc <27.7 mag

 Nearby Galaxies (Bresolin+98)
 30 Doradus (Approximation)

Extended Data Fig. 5: Dependence of the probability of observing highly magnified stellar images
on the stellar luminosity function of the underlying arc. Panel shows probabilities of (a) bright
microlensing events (F125W <26 mag; solid green and dotted pink), (b) a persistently bright mag-
nified star (F125W <27.7 mag) similar to that observed at LS1’s position in 2004–2017 (dashed
brown), and (c) a persistently bright magnified star (F125W <27.7 mag) within 0.06 pc (dot-dash
purple). Probabilities are small given the index of stellar luminosity function measured for nearby
galaxies (α = −2.53 ± 0.08; vertical blue)20, but become significantly larger for shallower power-
law indices, such as that for the 30 Doradus star-forming region in the LMC (vertical orange;
approximate). Here we have assumed Nobs = 50 visits by HST, the number of separate observa-
tions of MACS J1149 taken through 13 April 2017 after binning data by 10 days. The lower stellar
luminosity limit used for these simulations is 10 L�.
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Extended Data Fig. 6: Offsets from critical curve and luminosities of lensed stars for different
luminosity functions from 106 Monte Carlo simulations. We use the surface brightness (F125W ≈
25 mag arcsec−2) measured along the 0.2′′-wide arc to constrain the normalization of the stellar
luminosity function, and then Poisson statistics to populate the source plane. The lower luminosity
limit used for these simulations is 10 L�. Upper panels show that stars with F125W ≤27.7 magover
a period lasting many years should only appear within ∼ 0.15′′ of the critical curve, and have
luminosities of & 105.4 L�. Lower panels show expected offset distribution of bright microlensing
peaks (F125W ≤ 26 mag) to 0.4′′, and of the luminosities of lensed stars. A stellar luminosity
function similar to that measured in nearby galaxies (α = −2.53 ± 0.08) yields fewer events with
less-luminous stars20. Left panels indicate the offset θ in arcseconds of stars from the critical curve,
while right panels show the intrinsic luminosity of the stars in units of the solar luminosity (L�).
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Extended Data Fig. 7: Light curve at the positions of Lev16B (upper panel) detected on 30 October
2016 and potential event Lev 2017A (lower panel) detected on 3 January 2017. Fluxes measured
through all wide-band HST filters are converted to F125W using LS1’s SED. Lev 2017A is only
offset from Lev16B by 0.10′′, so flux measurements at their positions are correlated. The first
(higher) peak in Lev 2017A’s light curve plotted here corresponds to flux from Lev16B.
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Extended Data Fig. 8: Simulated light curves of a star at θ = 0.13′′ from cluster critical curve
for three stellar evolution and core-collapse models. The mass functions are constructed using
a Chabrier IMF and a prescription for binary fractions and mass ratios at low redshift22. The
stellar evolution models used to determine the initial–final mass function for each star include the
solar-metallicity, single stellar evolution models (Woosley02)23, as well as single stars at subsolar
metallicity (Z = 0.3 Z�; Z = 0.006) where BHs with masses up to 30 M� form from the collapse of
massive stars (Fryer12)24, and stars having initial masses greater than ∼ 33 M� become BHs with
masses within the range 20–50 M� (Spera15)25. The Fryer12 and Spera15 models contain greater
numbers of BH remnants, which may yield a higher frequency of decade-long intervals with low
magnification.
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Extended Data Fig. 9: Simulated light curves of a star at θ = 0.13′′ from cluster critical curve for
Chabrier (upper panel) and Salpeter (lower panel) IMFs. The simulated light curve constructed
from the model with a Salpeter IMF yields a greater number of peaks. Plotted models are con-
structed using a prescription for binary fractions and mass ratios at low redshift22. The stellar-
mass densities are 1.1+0.3

−0.3 × 107 M� kpc−2 and 1.9+0.6
−0.6 × 107 M� kpc−2 for the upper and lower plots,

respectively, and are the best-fitting values to the SED of the ICL for stellar-population synthesis
models constructed using Chabrier and Salpeter IMFs.
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Extended Data Fig. 10: Effect of increasing abundance of 30 M� BHs on the simulated light curves
of star at θ = 0.13′′. Replacing 1% (upper panel), 3% (middle), and 10% (bottom) of smooth DM
with 30 M� BHs yields light curves where the average magnification varies on an increasingly long
timescales. An extended period of low magnification for one of the pair of images could help to
explain why only a single image, LS1 / Lev16A, is persistently visible in HST imaging.
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Extended Data Fig. 11: Differences among the mass distributions of surviving stars and stellar
remnants (i.e., white dwarf stars, neutron stars, and BHs) for the Woosley02, Fryer12, and Spera15
stellar evolution models. Left panel plots the mass distributions assuming no stars have compan-
ions, and right panel shows mass functions assuming the mass-dependent binary fractions and mass
ratios measured in the nearby universe22.
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LS13"

Extended Data Fig. 12: Apertures used for revised estimate of galaxy-cluster stellar-mass density
along line-of-sight to LS1. We first estimate the mean M∗/L across all eight apertures using stellar-
population synthesis models. We next multiply the average F140W surface brightness in the two
apertures adjacent to LS1 by the mean value of M∗/L to estimate the stellar mass density along the
line of sight to LS1.
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Extended Data Fig. 13: Confidence intervals for 〈χ2〉 statistics determined using simulated light
curves. For the models listed in Table 1, we generate simulated light curves for stars with MV =

{−8,−9,−10}, and fit them, allowing the lensed star to have an absolute magnitude within the
range −7.5 < MV < −9.5. The dashed black vertical shows the average of the 〈χ2〉 statistics
for the Table 1 models for LS 1/ Lev16A and Lev16B. For all simulated light curves where the
average 〈χ2〉 value is within 100 of the vertical dashed line, we calculate the difference ∆〈χ2〉

values between the 〈χ2〉 values of the generative (“true”) model and of the best-fitting model. For
68% of simulated light curves, ∆〈χ2〉 . 13, and, for 95% of simulated light curves, ∆〈χ2〉 . 25.
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Extended Data Fig. 14: Example of trains of multiple counterimages of a single background star as
it traverses the region near the galaxy-cluster caustic. In general, there is a single counterimage per
microlens94, but most images have magnifications of order unity or even less and are not detectable.
We show example of trains without PBHs (left panel), where 30 M� PBHs account for 1% of DM
(middle panel), and where 30 M� PBHs account for 10% of DM (right panel). Increasing the PBH
abundance yields more extended trains, although their extent (∼ 3 milliarcsec) when PBHs account
for 10% would be too small to detect in HST imaging. The simulation shown is of a 1000 R� star
whose image appears at an offset of 0.13′′ from the cluster critical curve. Near peak magnification,
the star appears as a “train” of counterimages. Each cirlce in right panel encloses one image, and
each ellipse encloses a set of two or three closely spaced images, in the train. The sizes of the
circles and ellipses indicate the magnification of each image or set of images, respectively. In
addition to replacing fractions of cluster DM with PBHs, we have populated the lens plane with
stars and compact object remnants to match the mass density in surviving stars and remnants we
infer for the ICM (1.1+0.3

−0.3 × 107 M� kpc−2).

75



Date (MJD) Bandpass Flux σ

57538.38 ACS F275W -0.160 0.192
57531.29 ACS F336W 0.348 0.242
57538.33 ACS F336W 0.394 0.226
57531.37 ACS F475W -0.005 0.098
57531.46 ACS F435W -0.303 0.162
57531.46 ACS F435W -0.033 0.184
57524.28 ACS F606W 0.295 0.055
57524.28 ACS F606W 0.329 0.044
57531.71 ACS F606W 0.332 0.076
57531.71 ACS F606W 0.438 0.054
57534.29 ACS F606W 0.446 0.095
57534.29 ACS F606W 0.522 0.063
57536.10 ACS F606W 0.422 0.098
57536.10 ACS F606W 0.470 0.068
57537.09 ACS F606W 0.555 0.086
57537.09 ACS F606W 0.588 0.070
57524.38 ACS F814W 0.231 0.058
57524.38 ACS F814W 0.304 0.038
57531.49 ACS F814W 0.164 0.094
57531.49 ACS F814W 0.189 0.062
57524.47 WFC3 F105W 0.528 0.113
57524.47 WFC3 F105W 0.681 0.095
57524.47 WFC3 F125W 0.510 0.125
57524.47 WFC3 F125W 0.624 0.097
57524.61 WFC3 F125W 0.578 0.092
57524.61 WFC3 F125W 0.669 0.085
57527.18 WFC3 F125W 0.608 0.142
57527.18 WFC3 F125W 0.748 0.122
57532.02 WFC3 F125W 0.556 0.145
57532.02 WFC3 F125W 0.696 0.138
57534.27 WFC3 F125W 0.967 0.141
57534.27 WFC3 F125W 1.174 0.129
57536.06 WFC3 F125W 1.015 0.140
57536.06 WFC3 F125W 1.211 0.124
57537.05 WFC3 F125W 1.022 0.134
57537.05 WFC3 F125W 1.216 0.128
57538.31 WFC3 F125W 0.930 0.148
57538.31 WFC3 F125W 1.154 0.121
57524.54 WFC3 F160W 0.381 0.110
57524.54 WFC3 F160W 0.489 0.093
57527.20 WFC3 F160W 0.320 0.153
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Date (MJD) Bandpass Flux σ

57527.20 WFC3 F160W 0.427 0.155

Extended Data Table 1: Flux at LS1’s position during Lev16A after subtracting flux present in 2011
imaging. Fluxes are measured from difference images created by subtracting exposures acquired
in 2016 from template images taken in 2011. The zeropoint of listed fluxes is 25 AB, and no
correction for Galactic extinction is applied.
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Bandpass Flux σ

ACS F225W -0.007 0.026
ACS F275W -0.005 0.019
ACS F336W 0.019 0.010
ACS F435W 0.024 0.005
ACS F606W 0.050 0.006
ACS F814W 0.072 0.003

WFC3 F105W 0.143 0.006
WFC3 F125W 0.141 0.008
WFC3 F140W 0.113 0.004
WFC3 F160W 0.127 0.011

Extended Data Table 2: Photometry of LS1 measured from HFF imaging (2013–2014), and
archival near-UV HST imaging. The zeropoint of listed fluxes is 25 AB, and a correction for
Galactic extinction is applied.
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Bandpass Flux σ

ACS F225W −0.329 0.011
ACS F275W 0.110 0.054
ACS F336W 0.100 0.027
ACS F435W 0.089 0.016
ACS F606W 0.098 0.014
ACS F814W 0.091 0.008

WFC3 F105W 0.095 0.008
WFC3 F125W 0.097 0.009
WFC3 F140W 0.097 0.011
WFC3 F160W 0.107 0.010

Extended Data Table 3: Photometry of underlying lensed arc adjacent to LS1. The zeropoint of
listed fluxes is 25 AB, and fluxes are corrected for Galactic extinction.
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Date Bandpass LS1/2016A 2016B 2017A
(MJD) Flux σ Flux σ Flux σ

55534.98 WFC3 F125W 0.079 [0.079] 0.040 [0.040] 0.019 0.055 0.021 0.044
55629.90 WFC3 F125W 0.106 [0.106] 0.045 [0.045] -0.028 0.057 0.008 0.050
56981.06 WFC3 F125W 0.148 [0.148] 0.019 [0.019] -0.009 0.014 -0.014 0.017
56982.12 WFC3 F125W 0.125 [0.125] 0.020 [0.020] -0.016 0.018 -0.020 0.017
56983.04 WFC3 F125W 0.131 [0.131] 0.019 [0.019] -0.017 0.018 0.006 0.014
56983.31 WFC3 F125W 0.112 [0.112] 0.014 [0.014] -0.013 0.019 -0.006 0.016
56990.90 WFC3 F125W 0.198 [0.198] 0.046 [0.046] -0.038 0.055 -0.017 0.056
56992.95 WFC3 F125W 0.130 [0.130] 0.059 [0.059] -0.044 0.038 -0.024 0.042
56994.01 WFC3 F125W 0.146 [0.146] 0.033 [0.033] -0.029 0.047 -0.045 0.051
56996.73 WFC3 F125W 0.149 [0.149] 0.045 [0.045] 0.012 0.072 -0.016 0.061
56999.52 WFC3 F125W 0.150 [0.150] 0.044 [0.044] -0.028 0.049 0.015 0.044
57000.11 WFC3 F125W 0.096 [0.096] 0.073 [0.073] 0.068 0.063 0.038 0.042
57005.86 WFC3 F125W 0.148 [0.148] 0.021 [0.021] 0.012 0.016 0.005 0.012
57019.94 WFC3 F125W 0.061 [0.061] 0.076 [0.076] -0.174 0.104 -0.075 0.112
57020.80 WFC3 F125W 0.006 [0.006] 0.099 [0.099] 0.005 0.088 0.080 0.079
57021.80 WFC3 F125W 0.126 [0.126] 0.093 [0.093] 0.042 0.103 -0.026 0.102
57024.72 WFC3 F125W 0.100 [0.100] 0.102 [0.102] 0.058 0.119 0.010 0.044
57025.78 WFC3 F125W 0.094 [0.094] 0.082 [0.082] -0.069 0.115 -0.012 0.072
57025.91 WFC3 F125W 0.055 [0.055] 0.089 [0.089] 0.034 0.104 -0.007 0.098
57026.90 WFC3 F125W 0.018 [0.018] 0.080 [0.080] -0.087 0.133 -0.109 0.082
57029.54 WFC3 F125W 0.151 [0.151] 0.016 [0.016] 0.037 0.015 0.029 0.014
57033.94 WFC3 F125W 0.144 [0.144] 0.044 [0.044] -0.043 0.043 -0.002 0.046
57036.60 WFC3 F125W 0.109 [0.109] 0.046 [0.046] 0.010 0.050 0.045 0.041
57044.69 WFC3 F125W 0.120 [0.120] 0.036 [0.036] 0.029 0.040 0.011 0.040
57049.20 WFC3 F125W 0.099 [0.099] 0.033 [0.033] -0.006 0.030 0.023 0.039
57062.36 WFC3 F125W 0.120 [0.120] 0.040 [0.040] 0.041 0.046 0.041 0.047
57076.39 WFC3 F125W 0.111 [0.111] 0.039 [0.039] 0.001 0.055 -0.011 0.047
57090.39 WFC3 F125W 0.103 [0.103] 0.037 [0.037] -0.033 0.031 -0.032 0.052
57104.27 WFC3 F125W 0.132 [0.132] 0.057 [0.057] -0.017 0.050 -0.028 0.045
57118.14 WFC3 F125W 0.110 [0.110] 0.040 [0.040] -0.002 0.042 -0.016 0.044
57132.09 WFC3 F125W 0.144 [0.144] 0.068 [0.068] -0.027 0.071 0.001 0.079
57149.06 WFC3 F125W 0.079 [0.079] 0.055 [0.055] 0.058 0.045 0.047 0.076
57188.17 WFC3 F125W 0.148 [0.148] 0.040 [0.040] 0.004 0.049 0.009 0.031
57216.20 WFC3 F125W 0.153 [0.153] 0.049 [0.049] -0.062 0.050 0.010 0.039
57223.96 WFC3 F125W 0.095 [0.095] 0.054 [0.054] 0.030 0.044 0.033 0.044
57325.82 WFC3 F125W 0.044 [0.044] 0.060 [0.060] -0.023 0.077 0.005 0.049
57340.94 WFC3 F125W 0.109 [0.109] 0.035 [0.035] 0.039 0.043 0.026 0.050
57367.04 WFC3 F125W 0.131 [0.131] 0.051 [0.051] 0.071 0.053 0.053 0.051
57402.11 WFC3 F125W 0.212 [0.212] 0.045 [0.045] -0.027 0.034 0.011 0.039
57426.21 WFC3 F125W 0.155 [0.155] 0.037 [0.037] 0.007 0.037 -0.012 0.044
57430.59 WFC3 F125W 0.195 [0.195] 0.046 [0.046] 0.024 0.038 0.049 0.037
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Date Bandpass LS1/2016A 2016B 2017A
(MJD) Flux σ Flux σ Flux σ

57444.57 WFC3 F125W 0.174 [0.174] 0.033 [0.033] 0.008 0.029 -0.024 0.044
57459.03 WFC3 F125W 0.243 [0.243] 0.056 [0.056] 0.107 0.046 0.063 0.057
57472.53 WFC3 F125W 0.251 [0.251] 0.049 [0.049] 0.051 0.044 0.106 0.041
57493.26 WFC3 F125W 0.323 [0.323] 0.048 [0.048] 0.018 0.044 0.072 0.041
57507.53 WFC3 F125W 0.462 [0.462] 0.033 [0.033] -0.031 0.030 0.005 0.042
57521.27 WFC3 F125W 0.328 [0.328] 0.055 [0.055] 0.010 0.036 -0.047 0.052
57524.47 WFC3 F125W 0.313 [0.313] 0.056 [0.056] -0.027 0.041 0.016 0.044
57524.60 WFC3 F125W 0.399 [0.399] 0.045 [0.045] -0.020 0.044 -0.013 0.049
57524.61 WFC3 F125W 0.280 [0.280] 0.041 [0.041] -0.021 0.039 0.000 0.038
57527.18 WFC3 F125W 0.345 [0.345] 0.038 [0.038] 0.010 0.046 0.031 0.044
57532.02 WFC3 F125W 0.326 [0.326] 0.048 [0.048] 0.033 0.063 0.072 0.060
57534.27 WFC3 F125W 0.563 [0.563] 0.068 [0.068] 0.001 0.071 0.027 0.056
57536.06 WFC3 F125W 0.517 [0.517] 0.064 [0.064] -0.020 0.054 0.038 0.060
57537.05 WFC3 F125W 0.516 [0.516] 0.051 [0.051] 0.051 0.054 0.039 0.048
57538.31 WFC3 F125W 0.489 [0.489] 0.066 [0.066] 0.043 0.052 0.060 0.044
57541.09 WFC3 F125W 0.233 [0.233] 0.042 [0.042] 0.068 0.028 -0.011 0.049
57545.07 WFC3 F125W 0.286 [0.286] 0.071 [0.071] -0.005 0.071 0.019 0.055
57547.05 WFC3 F125W 0.214 [0.214] 0.057 [0.057] -0.002 0.049 -0.004 0.048
57549.00 WFC3 F125W 0.161 [0.161] 0.062 [0.062] 0.036 0.070 -0.013 0.047
57550.04 WFC3 F125W 0.141 [0.141] 0.057 [0.057] -0.034 0.063 -0.019 0.035
57551.67 WFC3 F125W 0.130 [0.130] 0.071 [0.071] 0.022 0.042 0.048 0.054
57553.73 WFC3 F125W 0.204 [0.204] 0.071 [0.071] 0.018 0.087 0.023 0.053
57555.91 WFC3 F125W 0.182 [0.182] 0.044 [0.044] -0.040 0.057 0.017 0.057
57557.50 WFC3 F125W 0.100 [0.100] 0.069 [0.069] -0.007 0.056 -0.042 0.055
57566.20 WFC3 F125W 0.159 [0.159] 0.055 [0.055] 0.006 0.053 0.006 0.051
57569.25 WFC3 F125W 0.181 [0.181] 0.055 [0.055] -0.070 0.047 -0.051 0.026
57573.22 WFC3 F125W 0.146 [0.146] 0.041 [0.041] 0.090 0.046 0.072 0.046
57577.71 WFC3 F125W 0.170 [0.170] 0.043 [0.043] -0.011 0.053 0.017 0.034
57580.18 WFC3 F125W 0.177 [0.177] 0.053 [0.053] 0.067 0.059 0.053 0.066
57583.09 WFC3 F125W 0.168 [0.168] 0.068 [0.068] -0.039 0.072 0.017 0.072
57586.01 WFC3 F125W 0.252 [0.252] 0.060 [0.060] 0.069 0.045 0.031 0.054
57589.19 WFC3 F125W 0.232 [0.232] 0.058 [0.058] -0.053 0.059 -0.047 0.060
57592.04 WFC3 F125W 0.111 [0.111] 0.071 [0.071] 0.055 0.056 0.034 0.059
57691.20 WFC3 F125W 0.257 [0.257] 0.055 [0.055] 0.391 0.055 0.260 0.040
57720.81 WFC3 F125W 0.103 [0.103] 0.038 [0.038] 0.008 0.041 0.006 0.023
57727.04 WFC3 F125W 0.155 [0.155] 0.038 [0.038] -0.001 0.038 0.046 0.046
57756.90 WFC3 F125W 0.159 [0.159] 0.037 [0.037] 0.083 0.033 0.147 0.029
55591.70 WFC3 F105W 0.031 [0.032] 0.035 [0.037] 0.009 0.032 0.011 0.028
55619.67 WFC3 F105W 0.139 [0.145] 0.045 [0.048] 0.014 0.036 -0.021 0.040
56711.48 WFC3 F105W 0.297 [0.311] 0.063 [0.067] 0.011 0.068 0.018 0.065
56711.94 WFC3 F105W 0.279 [0.291] 0.094 [0.100] -0.044 0.059 -0.007 0.088
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Date Bandpass LS1/2016A 2016B 2017A
(MJD) Flux σ Flux σ Flux σ

56713.63 WFC3 F105W 0.260 [0.272] 0.088 [0.094] 0.004 0.071 -0.052 0.077
56964.16 WFC3 F105W 0.180 [0.188] 0.078 [0.083] 0.000 0.062 -0.095 0.078
56968.88 WFC3 F105W 0.138 [0.145] 0.134 [0.143] -0.091 0.105 0.034 0.106
56972.06 WFC3 F105W 0.207 [0.217] 0.107 [0.114] 0.077 0.137 0.172 0.138
56982.31 WFC3 F105W 0.109 [0.114] 0.028 [0.029] -0.014 0.032 -0.004 0.029
57002.87 WFC3 F105W 0.137 [0.143] 0.014 [0.015] 0.000 0.018 -0.014 0.017
57006.98 WFC3 F105W 0.134 [0.140] 0.016 [0.017] 0.003 0.015 0.017 0.019
57011.89 WFC3 F105W 0.123 [0.129] 0.015 [0.016] -0.000 0.013 0.005 0.019
57014.88 WFC3 F105W 0.157 [0.164] 0.015 [0.016] 0.014 0.019 0.009 0.018
57015.81 WFC3 F105W 0.090 [0.094] 0.016 [0.017] 0.006 0.015 -0.008 0.009
57017.80 WFC3 F105W 0.126 [0.132] 0.014 [0.015] 0.000 0.017 0.002 0.014
57020.58 WFC3 F105W 0.125 [0.130] 0.013 [0.014] -0.027 0.012 -0.012 0.013
57023.77 WFC3 F105W 0.135 [0.141] 0.016 [0.017] 0.015 0.016 0.014 0.014
57025.56 WFC3 F105W 0.119 [0.125] 0.012 [0.013] -0.013 0.013 -0.001 0.015
57026.49 WFC3 F105W 0.139 [0.146] 0.013 [0.014] -0.015 0.012 -0.016 0.016
57027.81 WFC3 F105W 0.123 [0.128] 0.014 [0.015] 0.023 0.010 0.008 0.009
57132.10 WFC3 F105W 0.118 [0.124] 0.064 [0.068] -0.014 0.069 0.008 0.061
57149.07 WFC3 F105W 0.138 [0.145] 0.048 [0.051] 0.046 0.067 0.022 0.057
57168.28 WFC3 F105W 0.070 [0.073] 0.019 [0.021] 0.012 0.022 -0.006 0.034
57208.06 WFC3 F105W 0.068 [0.071] 0.054 [0.057] -0.047 0.033 0.004 0.047
57216.28 WFC3 F105W 0.129 [0.135] 0.043 [0.046] -0.029 0.042 -0.000 0.034
57430.59 WFC3 F105W 0.183 [0.192] 0.030 [0.032] 0.005 0.019 -0.023 0.024
57432.75 WFC3 F105W 0.157 [0.164] 0.023 [0.025] 0.042 0.019 0.028 0.022
57524.47 WFC3 F105W 0.367 [0.384] 0.031 [0.033] 0.005 0.035 -0.002 0.025
55535.00 WFC3 F160W 0.000 [0.000] 0.078 [0.100] -0.005 0.072 -0.042 0.068
55577.06 WFC3 F160W 0.062 [0.078] 0.063 [0.082] 0.004 0.059 -0.003 0.058
55619.12 WFC3 F160W 0.099 [0.125] 0.059 [0.076] -0.052 0.062 -0.057 0.061
55629.85 WFC3 F160W 0.116 [0.146] 0.058 [0.075] -0.035 0.052 -0.036 0.063
56598.14 WFC3 F160W 0.061 [0.077] 0.026 [0.033] -0.010 0.027 -0.010 0.035
56990.91 WFC3 F160W 0.126 [0.159] 0.086 [0.111] -0.067 0.087 -0.104 0.088
56992.97 WFC3 F160W 0.038 [0.048] 0.096 [0.124] 0.002 0.048 -0.004 0.108
56994.03 WFC3 F160W 0.076 [0.095] 0.033 [0.042] -0.016 0.066 0.041 0.061
56996.75 WFC3 F160W 0.075 [0.094] 0.058 [0.075] -0.086 0.113 -0.080 0.106
56999.56 WFC3 F160W 0.048 [0.060] 0.067 [0.087] 0.052 0.085 0.036 0.083
57000.13 WFC3 F160W 0.146 [0.185] 0.061 [0.079] 0.057 0.081 -0.048 0.081
57002.89 WFC3 F160W 0.118 [0.149] 0.022 [0.028] 0.002 0.023 -0.003 0.019
57007.00 WFC3 F160W 0.111 [0.140] 0.023 [0.030] -0.021 0.019 -0.011 0.014
57011.91 WFC3 F160W 0.124 [0.157] 0.023 [0.030] 0.032 0.023 0.008 0.027
57014.87 WFC3 F160W 0.020 [0.025] 0.026 [0.034] 0.005 0.031 0.025 0.027
57015.82 WFC3 F160W 0.124 [0.157] 0.025 [0.032] 0.014 0.023 0.015 0.021
57016.79 WFC3 F160W 0.072 [0.091] 0.057 [0.074] 0.069 0.089 -0.034 0.108
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Date Bandpass LS1/2016A 2016B 2017A
(MJD) Flux σ Flux σ Flux σ

57017.82 WFC3 F160W 0.097 [0.122] 0.017 [0.022] 0.006 0.017 -0.008 0.019
57018.78 WFC3 F160W 0.076 [0.096] 0.099 [0.128] 0.073 0.084 0.041 0.105
57019.64 WFC3 F160W -0.082 [-0.103] 0.094 [0.121] -0.196 0.164 -0.048 0.128
57020.60 WFC3 F160W 0.187 [0.236] 0.028 [0.037] -0.014 0.028 -0.028 0.028
57020.94 WFC3 F160W -0.004 [-0.006] 0.143 [0.185] 0.230 0.134 0.160 0.166
57023.78 WFC3 F160W 0.085 [0.107] 0.020 [0.026] 0.008 0.020 0.012 0.025
57025.57 WFC3 F160W 0.108 [0.136] 0.023 [0.029] -0.007 0.013 -0.013 0.023
57026.50 WFC3 F160W 0.116 [0.147] 0.020 [0.026] -0.019 0.027 0.002 0.021
57027.83 WFC3 F160W 0.114 [0.143] 0.025 [0.032] 0.004 0.026 0.008 0.019
57033.96 WFC3 F160W 0.116 [0.147] 0.067 [0.086] -0.083 0.050 -0.072 0.053
57036.61 WFC3 F160W 0.082 [0.103] 0.039 [0.051] -0.012 0.061 -0.092 0.048
57044.71 WFC3 F160W 0.102 [0.129] 0.057 [0.074] 0.038 0.058 0.067 0.063
57049.21 WFC3 F160W 0.108 [0.136] 0.034 [0.044] 0.034 0.048 0.007 0.047
57062.40 WFC3 F160W 0.077 [0.097] 0.074 [0.096] -0.002 0.061 -0.036 0.073
57076.41 WFC3 F160W 0.117 [0.147] 0.065 [0.083] 0.030 0.071 0.025 0.067
57090.42 WFC3 F160W 0.149 [0.188] 0.074 [0.096] 0.056 0.053 -0.028 0.060
57104.31 WFC3 F160W 0.072 [0.091] 0.070 [0.091] 0.027 0.080 -0.017 0.079
57118.22 WFC3 F160W 0.091 [0.115] 0.074 [0.096] 0.014 0.072 -0.015 0.074
57132.11 WFC3 F160W 0.029 [0.036] 0.067 [0.086] 0.001 0.081 0.065 0.091
57149.08 WFC3 F160W 0.127 [0.161] 0.086 [0.112] 0.051 0.077 -0.027 0.086
57168.29 WFC3 F160W 0.059 [0.074] 0.066 [0.085] 0.026 0.057 0.021 0.089
57188.19 WFC3 F160W 0.035 [0.045] 0.096 [0.123] -0.126 0.095 -0.057 0.087
57208.09 WFC3 F160W 0.094 [0.119] 0.088 [0.113] -0.069 0.094 0.002 0.079
57216.22 WFC3 F160W 0.109 [0.138] 0.052 [0.067] -0.137 0.079 -0.072 0.055
57224.00 WFC3 F160W 0.019 [0.024] 0.062 [0.080] 0.036 0.070 0.053 0.072
57325.84 WFC3 F160W 0.085 [0.108] 0.064 [0.083] -0.014 0.081 -0.078 0.059
57340.95 WFC3 F160W 0.125 [0.158] 0.081 [0.105] -0.044 0.058 -0.011 0.047
57367.06 WFC3 F160W 0.082 [0.104] 0.075 [0.097] 0.009 0.062 -0.055 0.052
57402.15 WFC3 F160W 0.155 [0.196] 0.061 [0.078] 0.044 0.061 0.013 0.033
57426.23 WFC3 F160W 0.157 [0.198] 0.071 [0.092] 0.083 0.055 0.043 0.062
57432.75 WFC3 F160W 0.147 [0.185] 0.046 [0.059] -0.074 0.042 -0.015 0.052
57444.61 WFC3 F160W 0.084 [0.106] 0.059 [0.076] -0.090 0.045 -0.064 0.054
57459.09 WFC3 F160W 0.237 [0.299] 0.056 [0.072] 0.023 0.059 -0.032 0.036
57472.54 WFC3 F160W 0.166 [0.210] 0.064 [0.083] 0.102 0.068 0.088 0.030
57493.30 WFC3 F160W 0.229 [0.289] 0.070 [0.090] 0.079 0.069 0.094 0.074
57507.57 WFC3 F160W 0.269 [0.339] 0.062 [0.080] 0.094 0.067 0.088 0.069
57521.30 WFC3 F160W 0.253 [0.319] 0.060 [0.077] 0.071 0.055 0.089 0.063
57524.54 WFC3 F160W 0.259 [0.327] 0.047 [0.061] -0.020 0.043 0.038 0.035
57527.20 WFC3 F160W 0.244 [0.309] 0.053 [0.069] -0.018 0.058 0.037 0.064
57541.13 WFC3 F160W 0.168 [0.212] 0.054 [0.070] -0.021 0.062 -0.030 0.070
57545.10 WFC3 F160W 0.301 [0.380] 0.081 [0.105] -0.070 0.055 -0.022 0.075
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57547.09 WFC3 F160W 0.212 [0.268] 0.075 [0.097] -0.006 0.061 0.003 0.078
57549.04 WFC3 F160W 0.139 [0.176] 0.060 [0.077] 0.009 0.075 -0.029 0.071
57550.10 WFC3 F160W 0.104 [0.131] 0.077 [0.099] -0.102 0.089 -0.062 0.092
57551.71 WFC3 F160W 0.176 [0.222] 0.076 [0.098] -0.103 0.071 -0.084 0.068
57553.79 WFC3 F160W 0.121 [0.153] 0.107 [0.138] -0.096 0.106 -0.053 0.083
57555.95 WFC3 F160W 0.188 [0.237] 0.087 [0.112] -0.010 0.091 0.011 0.078
57557.53 WFC3 F160W 0.139 [0.175] 0.043 [0.056] -0.011 0.055 -0.069 0.098
57566.22 WFC3 F160W 0.169 [0.214] 0.079 [0.103] -0.074 0.066 -0.072 0.052
57569.26 WFC3 F160W 0.133 [0.168] 0.067 [0.086] -0.093 0.081 -0.085 0.082
57573.24 WFC3 F160W 0.155 [0.196] 0.051 [0.066] -0.036 0.077 -0.021 0.047
57577.74 WFC3 F160W 0.226 [0.286] 0.077 [0.100] -0.038 0.073 0.010 0.069
57583.13 WFC3 F160W 0.163 [0.206] 0.079 [0.102] -0.066 0.073 0.032 0.060
57586.05 WFC3 F160W -0.005 [-0.006] 0.068 [0.088] 0.059 0.113 -0.038 0.064
57589.20 WFC3 F160W 0.018 [0.023] 0.073 [0.094] -0.135 0.069 -0.061 0.063
57691.21 WFC3 F160W 0.207 [0.261] 0.088 [0.113] 0.352 0.088 0.258 0.065
57727.07 WFC3 F160W 0.112 [0.142] 0.056 [0.072] -0.053 0.077 0.016 0.070
55591.71 WFC3 F140W 0.072 [0.092] 0.043 [0.054] 0.016 0.040 -0.026 0.030
55619.65 WFC3 F140W 0.009 [0.011] 0.038 [0.047] -0.002 0.043 -0.013 0.045
56711.77 WFC3 F140W 0.208 [0.265] 0.071 [0.090] 0.022 0.063 0.048 0.056
56971.93 WFC3 F140W 0.160 [0.204] 0.059 [0.074] -0.111 0.069 -0.101 0.081
56972.13 WFC3 F140W 0.261 [0.332] 0.080 [0.100] 0.109 0.081 0.107 0.109
56981.85 WFC3 F140W 0.084 [0.107] 0.016 [0.020] 0.001 0.019 -0.004 0.016
56981.98 WFC3 F140W 0.110 [0.139] 0.014 [0.018] 0.019 0.011 0.014 0.012
56982.32 WFC3 F140W 0.115 [0.147] 0.019 [0.024] -0.007 0.015 -0.013 0.015
56983.18 WFC3 F140W 0.127 [0.161] 0.009 [0.011] -0.004 0.014 -0.012 0.011
56984.84 WFC3 F140W 0.101 [0.128] 0.013 [0.017] -0.009 0.015 0.016 0.019
55576.98 ACS F606W 0.000 [0.002] 0.026 [0.109] 0.047 0.023 -0.008 0.023
55619.52 ACS F606W -0.022 [-0.074] 0.027 [0.113] 0.002 0.020 0.016 0.028
57149.51 ACS F606W 0.028 [0.097] 0.006 [0.026] -0.013 0.009 -0.001 0.011
57150.57 ACS F606W 0.042 [0.142] 0.011 [0.046] 0.046 0.008 0.008 0.007
57151.49 ACS F606W 0.025 [0.086] 0.008 [0.034] -0.019 0.008 -0.002 0.010
57155.60 ACS F606W 0.035 [0.119] 0.012 [0.048] -0.063 0.009 -0.012 0.010
57161.36 ACS F606W 0.035 [0.118] 0.009 [0.038] 0.047 0.010 0.004 0.011
57524.28 ACS F606W 0.108 [0.369] 0.013 [0.053] 0.027 0.016 0.007 0.015
57531.40 ACS F606W 0.113 [0.387] 0.028 [0.114] 0.062 0.022 -0.001 0.021
57720.74 ACS F606W 0.014 [0.046] 0.025 [0.103] 0.025 0.021 -0.014 0.031
57720.89 ACS F606W 0.023 [0.078] 0.025 [0.104] -0.035 0.031 -0.008 0.024
53117.80 ACS F814W 0.038 [0.051] 0.020 [0.031] -0.005 0.021 0.007 0.019
53880.47 ACS F814W 0.153 [0.203] 0.035 [0.056] -0.036 0.038 -0.026 0.048
57131.53 ACS F814W 0.074 [0.098] 0.023 [0.036] -0.031 0.020 -0.007 0.021
57132.59 ACS F814W 0.073 [0.096] 0.018 [0.028] 0.004 0.021 -0.001 0.021

84



Date Bandpass LS1/2016A 2016B 2017A
(MJD) Flux σ Flux σ Flux σ

57133.79 ACS F814W 0.057 [0.076] 0.024 [0.038] 0.010 0.025 0.014 0.020
57134.65 ACS F814W 0.084 [0.112] 0.020 [0.031] 0.006 0.021 0.010 0.020
57135.58 ACS F814W 0.067 [0.089] 0.026 [0.041] -0.031 0.025 -0.010 0.022
57137.09 ACS F814W 0.090 [0.120] 0.017 [0.026] 0.008 0.024 -0.024 0.025
57137.63 ACS F814W 0.081 [0.107] 0.025 [0.040] -0.010 0.017 0.004 0.017
57137.83 ACS F814W 0.089 [0.118] 0.021 [0.033] 0.006 0.023 -0.005 0.027
57138.09 ACS F814W 0.046 [0.061] 0.020 [0.031] 0.012 0.025 -0.011 0.021
57140.34 ACS F814W 0.099 [0.132] 0.020 [0.032] 0.036 0.027 0.015 0.027
57140.61 ACS F814W 0.076 [0.101] 0.021 [0.033] 0.009 0.021 0.011 0.024
57141.60 ACS F814W 0.114 [0.152] 0.016 [0.025] 0.047 0.018 0.019 0.021
57142.46 ACS F814W 0.073 [0.097] 0.020 [0.031] -0.010 0.024 -0.009 0.012
57143.39 ACS F814W 0.076 [0.101] 0.021 [0.033] 0.002 0.018 0.001 0.025
57143.66 ACS F814W 0.067 [0.089] 0.012 [0.019] -0.001 0.020 0.003 0.022
57149.49 ACS F814W 0.094 [0.124] 0.022 [0.035] -0.023 0.021 0.000 0.020
57150.55 ACS F814W 0.096 [0.127] 0.026 [0.041] -0.000 0.022 0.002 0.015
57151.48 ACS F814W 0.062 [0.082] 0.028 [0.045] 0.021 0.027 -0.000 0.020
57157.39 ACS F814W 0.118 [0.157] 0.022 [0.035] -0.014 0.027 -0.005 0.018
57159.84 ACS F814W 0.125 [0.166] 0.026 [0.042] -0.037 0.029 -0.017 0.034
57524.34 ACS F814W 0.271 [0.360] 0.037 [0.059] -0.017 0.037 0.015 0.043
57524.41 ACS F814W 0.284 [0.377] 0.049 [0.077] -0.036 0.029 0.006 0.032
57531.49 ACS F814W 0.246 [0.327] 0.043 [0.068] 0.029 0.053 -0.033 0.057
57720.76 ACS F814W 0.104 [0.139] 0.079 [0.126] 0.084 0.072 0.031 0.076
57720.87 ACS F814W 0.062 [0.082] 0.071 [0.113] 0.056 0.057 0.028 0.067
55605.27 ACS F435W 0.038 [0.267] 0.028 [0.230] -0.011 0.030 0.026 0.033
55619.53 ACS F435W 0.011 [0.079] 0.034 [0.282] -0.096 0.051 -0.009 0.040
57131.54 ACS F435W 0.009 [0.061] 0.013 [0.112] -0.061 0.016 -0.016 0.017
57137.11 ACS F435W 0.013 [0.090] 0.015 [0.124] -0.087 0.017 -0.010 0.011
57138.10 ACS F435W 0.039 [0.271] 0.020 [0.163] -0.030 0.013 0.001 0.016
57140.36 ACS F435W -0.015 [-0.102] 0.018 [0.147] -0.014 0.019 0.022 0.015
57140.62 ACS F435W 0.011 [0.077] 0.019 [0.156] 0.066 0.016 -0.011 0.014
57141.62 ACS F435W 0.039 [0.271] 0.020 [0.170] -0.109 0.018 -0.007 0.016
57142.48 ACS F435W 0.011 [0.080] 0.017 [0.142] -0.026 0.018 -0.024 0.018
57143.41 ACS F435W 0.022 [0.154] 0.016 [0.135] 0.196 0.019 0.033 0.019
57143.67 ACS F435W 0.029 [0.203] 0.009 [0.073] -0.114 0.016 -0.005 0.015
57531.46 ACS F435W 0.056 [0.391] 0.059 [0.494] 0.215 0.053 0.010 0.047
56985.07 WFC3 F606W 0.064 [0.140] 0.017 [0.036] 0.005 0.024 -0.005 0.014
56985.80 WFC3 F606W 0.059 [0.129] 0.017 [0.038] -0.001 0.020 -0.019 0.016
57532.03 WFC3 F606W 0.104 [0.228] 0.039 [0.085] -0.009 0.026 -0.015 0.029
57534.29 WFC3 F606W 0.144 [0.314] 0.026 [0.056] -0.001 0.017 0.014 0.031
57536.10 WFC3 F606W 0.170 [0.371] 0.029 [0.062] -0.013 0.030 -0.007 0.034
57537.09 WFC3 F606W 0.208 [0.453] 0.032 [0.069] 0.038 0.027 0.011 0.022
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57580.19 WFC3 F606W 0.099 [0.217] 0.023 [0.051] -0.059 0.041 0.009 0.025
57592.07 WFC3 F606W 0.033 [0.072] 0.034 [0.074] 0.053 0.023 0.051 0.035
57756.92 WFC3 F606W 0.042 [0.092] 0.035 [0.075] 0.060 0.039 0.031 0.031
57776.68 WFC3 F606W 0.036 [0.079] 0.030 [0.065] -0.007 0.033 -0.025 0.025
57853.22 WFC3 F606W 0.047 [0.102] 0.035 [0.075] 0.028 0.028 0.008 0.024
57872.02 WFC3 F606W 0.089 [0.193] 0.035 [0.075] -0.004 0.034 -0.023 0.040
57892.57 WFC3 F606W 0.083 [0.180] 0.033 [0.072] -0.021 0.030 0.014 0.034

Extended Data Table 4: Photometry at locations of LS1/Lev 2016, Lev 2016, and Lev 2017 of
HST imaging acquired 2004–2017. The zeropoint of listed fluxes is 25 AB, and no correction for
Galactic extinction is applied. Values in brackets in LS1/Lev 2016 are estimates of star’s WFC3
F125W flux converted using the star’s SED. For LS1/Lev16A, fluxes are the sum of flux measured
from deep coaddition and that measured from a difference image created by subtracting each image
from the deep coaddition. Fluxes at the positions of Lev16B and Lev 2017A are measured from
difference imaging.
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