A candidate redshift $z \approx 10$ galaxy and rapid changes in that population at an age of 500 Myr

R. J. Bouwens1,2, G. D. Illingworth1, I. Labbé3, P. A. Oesch4, M. Trenti5, C. M. Carollo4, P. G. van Dokkum6, M. Franx2, M. Stiavelli7, V. González1, D. Magee1 & L. Bradley7

Searches for very-high-redshift galaxies over the past decade have yielded a large sample of more than 6,000 galaxies existing just 900–2,000 million years (Myr) after the Big Bang (redshifts $3 < z < 6$; ref. 1). The Hubble Ultra Deep Field (HUDF09) data2,3 have yielded the first reliable detections of $z \approx 8$ galaxies$^{4-9}$ that, together with reports of a γ-ray burst at $z \approx 8.2$ (refs 10, 11), constitute the earliest objects reliably reported to date. Observations of $z \approx 7–8$ galaxies suggest substantial star formation at $z > 9–10$ (refs 12, 13). Here we use the full two-year HUDF09 data to conduct an ultra-deep search for $z \approx 10$ galaxies in the heart of the reionization epoch, only 500 Myr after the Big Bang. Not only do we find one possible $z \approx 10$ galaxy candidate, but we show that, regardless of source detections, the star formation rate density is much smaller ($\sim 10\%)$ at this time than it is just ~ 200 Myr later at $z = 8$. This demonstrates how rapid galaxy build-up was at $z \approx 10$, as galaxies increased in both luminosity density and volume density from $z = 8$ to $z = 10$. The $100–200$ Myr before $z \approx 10$ is clearly a crucial phase in the assembly of the earliest galaxies.

The detection of galaxies at very high redshift from deep imaging data depends on the absorption (by intervening neutral hydrogen) of much of the flux in the spectrum at wavelengths below the wavelength of Lyman α (121.6 nm). These ‘spectral breaks’ shift to longer wavelengths for more distant, redshifted galaxies seen at earlier times. A distinguishing characteristic of $z \approx 10$ galaxies would be, first, a detection in the H_{160} band, and, second, the absence of flux in the J_{125} band, and in all other shorter-wavelength Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3/IR) and Advanced Camera for Surveys (ACS) filters blueward of the J_{125} band (hence they are called ‘J_{125}-dropouts’). The new, powerful HST WFC3/IR camera is ~ 40 times more efficient at finding $z \approx 7$ galaxies$^{8-9}$ than the previous near-infrared NICMOS camera owing to its wider field of view and greater sensitivity in its Y_{105}, J_{125} and H_{160} filters. It provides us with the capability to explore to $z \approx 10$.

A thorough search of the deep WFC3/IR HUDF09 data set strong limits at $z \approx 10$, and also resulted in the detection of a candidate $z \approx 10$ J_{125}-dropout galaxy UDFj-39546284 at 5.4σ in our 0.26μm-diameter selection aperture (Fig. 1). The signal-to-noise ratio grows to 5.8σ in a larger 0.35μm-diameter aperture, is 28.92 ± 0.18 mag in the WFC3/IR H_{160} band ($(1.01 \pm 0.18) \times 10^{-31}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$), has a likely redshift of $z \approx 10.3$ (Fig. 2), and appears to be slightly extended. Given the importance of the limits that we set, and of the candidate $z \approx 10$ galaxy, we perform extensive tests and simulations. These are be undetected ($<2\sigma$) in all imaging observations blueward of the J_{125} band. Also, candidates must not be detected at $>1.5\sigma$ in more than one band blueward of the J_{125} band, and not have $\chi^2 < 2.5$ in the extremely-deep image obtained by combining the B_{355}, V_{606}, I_{775}, J_{125}, H_{160} and Y_{105} imaging data. All of these requirements place very strong limits on any optical flux from our $z \approx 10$ candidates and provide strong discrimination against contamination by low-redshift sources (see ref. 9, Appendix C). The candidate is significant at $>3\sigma$ in each year of observations and therefore not likely to be spurious. It is detected at 5.8σ in the H_{160} band, which is much more significant than the next possible candidates (seen at 4.0σ and 4.9σ). In addition, our $z \approx 10$ candidate is not detected in the IRAC data, as expected given the IRAC flux limits. The positions and other properties of these objects are given in Supplementary Table 1.

1Department of Astronomy, University of California Santa Cruz, Santa Cruz, California 95064, USA. 2Leiden Observatory, Leiden University, Leiden NL-2333, The Netherlands. 3Carnegie Observatories, Pasadena, California 91101, USA. 4Institute for Astronomy, ETHZurich, Zurich CH-8093, Switzerland. 5University of Colorado, Center for Astrophysics and Space Astronomy, Boulder, Colorado 80303, USA. 6Department of Astronomy, Yale University, New Haven, Connecticut 06520, USA. 7Space Telescope Science Institute, Baltimore, Maryland 21218, USA.
parameterized as luminosity function was used (see Fig. 3). Note that the luminosity function spectroscopic detection at.

The characteristic luminosity, and \(L_* \) is the faint end slope. The luminosity function describes the number density of galaxies versus luminosity and is usually parameterized as \(\Phi(L) \propto L^{-1.5} \), where \(\Phi \) is the normalization, \(L_* \) is the characteristic luminosity, and \(z \) is the faint end slope. The luminosity function was assumed to have an \(M_{UV}^* \) of \(-19.5\) and \(-18.8\) at \(z = 8 \) and \(z = 10 \), respectively (based on predictions from our \(z = 4-6 \) fitting relation\(^{23}\)), while \(z \) was taken to be \(-1.74\).

described in Supplementary Information sections 4 and 7, while the candidate properties are given in Supplementary Table 1.

The existence of galaxies at \(z \geq 8.2 \) (the \(\gamma \) -ray burst redshift\(^{10,11}\)) is strengthened by three additional sources that have been detected in recent searches\(^{3-9}\), one of which has a tentative spectroscopic detection at \(z = 8.6 \) (ref. 14). The updated redshift distributions from our simulations show that these three sources\(^3\) are most likely to be at \(z \approx 8.7\), 8.5 and 8.6 (Fig. 2). The expectation of finding galaxies at \(z \approx 10 \), just \(\sim 120 \) Myr earlier, is enhanced by these strong detections at \(z \approx 8.5 \), especially since the \(z \approx 7-8 \) Spitzer and HST data suggest that substantial star formation is likely at \(z \approx 9-10 \) (refs 12, 13).

The photometric-selection ‘dropout’ approach has been verified through numerous spectroscopic confirmations at redshifts from \(z = 2 \) to \(z = 6 \) (refs 15-19), and possibly also now at \(z \approx 8.6 \) (ref. 14).

For our candidate \(z \approx 10 \) galaxy, however, its single band (H\(_{160}\) band) detection increases the risk of contamination compared to the \(z \approx 7 \) and \(z \approx 8 \) samples, where two (or more) bands are used to measure the source magnitudes and colours. Fortunately, we can test the robustness of the single-band detection process by selecting \(z \approx 8 \) galaxy candidates using the J-band data alone. Analogous to the \(z \approx 10 \) J\(_{125}\)-dropout, \(z \approx 8 \) galaxies are Y\(_{105}\)-band dropouts. We compare this single-band selection against the more robust \(z \approx 8 \) detections using two bands\(^3\) (J\(_{125}\) and H\(_{160}\)). We are very encouraged that we select the same eight \(z \approx 8 \) Y\(_{105}\)-dropouts with the J\(_{125}\)- and H\(_{160}\)-band data, as we do with the J\(_{125}\)-band data alone. The primary reason for the robustness is the non-detection in all shorter wavelength filters. The \(\chi^2_{\text{opt}} \) test that we have developed\(^9\) largely eliminates contaminating objects.

Our \(z \approx 10 \) candidate was also checked for any Spitzer IRAC flux in the 3.6 \(\mu \)m band (see Fig. 1). It is quite isolated and is not detected to \(\sim 27\) AB mag (2\(\sigma \)), further enhancing the case that this \(z \approx 10 \) candidate corresponds to a very-high-redshift galaxy rather than a highly reddened, lower-redshift contaminant. Contamination from spurious sources is also an important concern for such faint sources. We verified that the source is present in a wide variety of subsets of the H\(_{160}\) band data (Fig. 1, Supplementary Fig. 2), suggesting that the candidate is not spurious. Although these tests make a case for this source being a \(z \approx 10 \) galaxy, deeper observations—involving both imaging (with, for example, WFC3/IR) and spectroscopy (with the James Webb Space Telescope)—will be required to confirm it.

Using the results of these tests and Monte Carlo simulations, we estimate there is an \(-20\)% probability that our candidate is a contaminant or is spurious. Of that \(20\% \), \(10\% \) was estimated to be from photometric scatter. Contamination from spurious sources is uncertain, and our estimates range from \(1\% \) to \(10\% \) probability; to be conservative we adopt \(10\% \). Contamination from lower-redshift red sources is also possible, but the above single-filter \(z \approx 8 \) Y\(_{105}\)-dropout test suggests that the probable contamination is small, consistent with the totals we estimate from our other tests (\(-20\%)\).

Fortunately, the depth of the data and the thoroughness of our analysis for contamination allow us to set very strong constraints on the volume density of \(z \approx 10 \) galaxies, regardless of the uncertainties associated with our candidate \(z \approx 10 \) galaxy. Thus we evaluate our constraints based on the limit set if no galaxies were found, and based on the candidate \(z \approx 10 \) galaxy, whose volume density is corrected by \(20\% \) to account for the estimated contamination rate.

Large-scale structure uncertainties are important for small area searches. We estimate the field-to-field variance on the present \(z \approx 10 \) J-dropout searches in the HUDF09 field to be 39% (see Supplementary Information\(^\text{20}\)). Even at this level, the cosmic variance (\'large-scale structure\') is not the dominant source of uncertainty for our single candidate galaxy.

These \(z \approx 10 \) results have far-reaching implications for estimating the role of galaxies in reionization (using the luminosity density), and for establishing the star formation rate density at very early times, as \(z \approx 10 \) is just 480 Myr after the Big Bang and just a few hundred million years since the first galaxies formed. Strikingly, the upper limits and our candidate allow us to place quantitative constraints on the \(z \approx 10 \) luminosity function.

This is demonstrated by first contrasting what we see at \(z \approx 10 \) with expectations based on a \'no-evolution\' scenario: that is, the galaxy populations stay unchanged with time. We compute the \'no-evolution\' estimate by using our \'galaxy cloning\' software\(^\text{11}\) to artificially redshift the observed \(z \approx 6 \) and \(z \approx 7 \) galaxy population to \(z \approx 10 \), add them at random positions within our HUDF data, and then repeat the object selection process just as for the observed \(z \approx 10 \) galaxies. We estimated that we would find \(12 \pm 4 \) \(z \approx 10 \) galaxies using our \(z \approx 7 \) detections as the baseline, and \(23 \pm 5 \) \(z \approx 10 \) galaxies using our \(z \approx 6 \) detections as a baseline. These \'no-evolution\' estimates are substantially higher than our (contamination-corrected) estimate of \(\sim 0.8 \) \(z \approx 10 \) galaxies. For simple Poissonian statistics, our observed number of \(\sim 0.8 \) galaxies is inconsistent with \'no-evolution\' at \(4\sigma \) and \(5\sigma \) confidence, respectively (and sets even stronger limits on any ‘upturn’ in the star formation rate\(^\text{6}\)). Although striking, this is not wholly unexpected. Extrapolating the trends seen by us at lower redshifts\(^\text{14}\) would lead us to expect \(3 \pm 2 \) \(z \approx 10 \) sources. Thus our results reaffirm that the significant evolution seen in galaxies at lower redshift continues to \(z \approx 10 \) (in contrast with other studies\(^\text{5}\)).

The present search results can also be expressed as constraints on the luminosity function at \(z \approx 10 \). The luminosity function describes the number density of galaxies versus luminosity, and is important for estimating the ultraviolet flux from galaxies and their expected role in
reionizing the Universe. The high-redshift–galaxy ultraviolet luminosity function maintains a nearly constant form and evolves in a largely self-similar manner, with the characteristic luminosity (L^*) increasing smoothly over about 1,300 Myr from $z \approx 7$ to $z \approx 3$, that is, from ~750 Myr to ~2,000 Myr. Assuming the same form for the ultraviolet luminosity function at $z \approx 10$, we find that L^* at $z \approx 10$ is fainter, indicating that the evolution in the bright end of the ultraviolet luminosity function seen from $z \approx 7$ to $z \approx 4$ (refs 1, 9, 22) continues to $z \approx 10$ (Fig. 3). Definitive measurements of L^* at $z \approx 10$ will, of course, require deep, wide-area data to define the luminous end of the $z \approx 10$ luminosity function.

The existence of a steep slope z to the faint end of the ultraviolet luminosity function found at $z \approx 6–7$ (refs 1, 2, 9) highlights the importance of low luminosity galaxies in providing the flux needed to reionize the Universe. It is of great interest to estimate the ultraviolet luminosity density at $z \approx 7–10$ where reionization most probably occurred, given its apparent completion at $z \approx 6$ (ref. 23) and its onset at $z \approx 11$ as deduced from Wilkinson Microwave Anisotropy Probe (WMAP) measurements. The recent results from the HUDF09 data set provide estimates for the ultraviolet luminosity density at $z \approx 7$ and at $z \approx 8$ (ref. 9). We can now also do so at $z \approx 10$. We compute the luminosity density implied by our sample by assuming a faint-end slope of -1.7 (the same slope as found for the $z \approx 2–7$ luminosity functions) and extending the integration down to a very plausible limit of -12 AB mag. We find that the ultraviolet flux that is available from galaxies at $z \approx 10$ is only $\sim 12 \times 10^{-26} \text{ergs s}^{-1} \text{cm}^{-2}$ of what is needed for galaxies to be the reionizing source, with typical assumptions of an escape fraction of ~ 0.4, a clumping factor of ~ 5 and a Salpeter initial mass function (see, for example, ref. 9). This result is tantalizing, suggesting that galaxies are contributing to reionization, but the enigma remains: where are most of the needed ultraviolet photons coming from? Observations to significantly fainter levels will be central to characterizing the role of galaxies in reionization.

The star formation rate density increases systematically and monotonically at early times from $z \approx 10$ (500 Myr) to $z \approx 4$ (1,600 Myr), peaking at $z \approx 2–3$ (at $\sim 2,500$ Myr), before decreasing at $z < 4$ (Fig. 4). This suggests that the luminosity function and star formation rate evolution found at lower redshifts continues to $z \approx 10$ when the universe was just 480 Myr old. The limits established here even suggest that the trends in star formation rate density established at lower redshifts could be steepening.

This is clearly an era when galaxies were evolving very rapidly. The star formation rate density increased by a factor of ~ 10 in less than 200 Myr, from $z \approx 10$ to $z \approx 8$. This dramatic change in such a short period of time suggests that the first phases of galaxy formation and their build-up could be revealed by observations that penetrate just 200 Myr earlier, to redshifts $z \approx 15$. However, only when the James Webb Space Telescope is launched will these first phases of galaxy build-up between $z \approx 15$ and $z \approx 10$ be revealed.

Received 21 December 2009; accepted 30 November 2010.

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We are grateful to all those at NASA, STScI and throughout the community who have worked to make the Hubble Space Telescope the observatory that it is today, and we acknowledge the importance of the servicing missions and those who organised them. We acknowledge our program coordinator W. Januszewski for his care in helping to set up our program and observing configuration. We acknowledge support from NASA and the Swiss National Science Foundation.

Author Contributions R.J.B. carried out the most of the data analysis and calculations for this paper, and wrote most of the Supplementary Information; G.D.I. wrote most of the text in the Letter and iterated on the initial science results and content with R.J.B.; I.L., P.A.O., M.T., C.M.C., P.G.v.D., M.F., M.S. and L.B. provided significant feedback on the science content and on the drafts; I.L. and V.G. were involved with processing the Spitzer IRAC data; P.A.O. contributed to the data analysis; M.T. made the cosmic variance estimates; and D.M. was involved in data processing and pipeline generation for the WFC3/IR data.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to R.J.B. (bouwens@ucolick.org).